document.write( "Question 1166411: Find two vectors, V1 and V2 whose sum is <-2,0>, where V1 is parallel to <0,2> while V2 is perpendicular to <0,2>. \n" ); document.write( "
Algebra.Com's Answer #852759 by CPhill(2138) You can put this solution on YOUR website! This problem can be solved by setting up a system of linear equations based on the properties of parallel and perpendicular vectors in the plane.\r \n" ); document.write( "\n" ); document.write( "The two vectors are: \n" ); document.write( "* $\mathbf{V}_1 = \langle 0, 2 \rangle$ \n" ); document.write( "* $\mathbf{V}_2 = \langle -2, 0 \rangle$\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "## 📐 Setting Up the Equations\r \n" ); document.write( "\n" ); document.write( "Let the two unknown vectors be: \n" ); document.write( "$$\mathbf{V}_1 = \langle a, b \rangle$$ \n" ); document.write( "$$\mathbf{V}_2 = \langle c, d \rangle$$\r \n" ); document.write( "\n" ); document.write( "### 1. The Sum Condition\r \n" ); document.write( "\n" ); document.write( "The sum of the two vectors is $\langle -2, 0 \rangle$: \n" ); document.write( "$$\mathbf{V}_1 + \mathbf{V}_2 = \langle a + c, b + d \rangle = \langle -2, 0 \rangle$$ \n" ); document.write( "This gives us two scalar equations: \n" ); document.write( "1. $a + c = -2$ \n" ); document.write( "2. $b + d = 0$\r \n" ); document.write( "\n" ); document.write( "### 2. The Parallel Condition ($\mathbf{V}_1$ is parallel to $\langle 0, 2 \rangle$)\r \n" ); document.write( "\n" ); document.write( "If $\mathbf{V}_1$ is parallel to $\langle 0, 2 \rangle$, then $\mathbf{V}_1$ must be a scalar multiple ($k$) of $\langle 0, 2 \rangle$: \n" ); document.write( "$$\mathbf{V}_1 = k \langle 0, 2 \rangle = \langle 0, 2k \rangle$$ \n" ); document.write( "Comparing this to $\mathbf{V}_1 = \langle a, b \rangle$: \n" ); document.write( "3. $a = 0$ \n" ); document.write( "4. $b = 2k$\r \n" ); document.write( "\n" ); document.write( "### 3. The Perpendicular Condition ($\mathbf{V}_2$ is perpendicular to $\langle 0, 2 \rangle$)\r \n" ); document.write( "\n" ); document.write( "Two vectors are perpendicular if their **dot product** is zero \r \n" ); document.write( "\n" ); document.write( "[Image of two perpendicular vectors showing the dot product is zero] \n" ); document.write( ". \n" ); document.write( "$$\mathbf{V}_2 \cdot \langle 0, 2 \rangle = 0$$ \n" ); document.write( "$$\langle c, d \rangle \cdot \langle 0, 2 \rangle = (c)(0) + (d)(2) = 0$$ \n" ); document.write( "$$2d = 0$$ \n" ); document.write( "5. $d = 0$\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "## 🧠 Solving the System\r \n" ); document.write( "\n" ); document.write( "Now we substitute the determined values back into the sum conditions:\r \n" ); document.write( "\n" ); document.write( "* From Equation 3, we know **$a = 0$**. \n" ); document.write( "* From Equation 5, we know **$d = 0$**.\r \n" ); document.write( "\n" ); document.write( "1. **Use $a=0$ in the first sum equation:** \n" ); document.write( " $$a + c = -2$$ \n" ); document.write( " $$0 + c = -2$$ \n" ); document.write( " $$\mathbf{c = -2}$$\r \n" ); document.write( "\n" ); document.write( "2. **Use $d=0$ in the second sum equation:** \n" ); document.write( " $$b + d = 0$$ \n" ); document.write( " $$b + 0 = 0$$ \n" ); document.write( " $$\mathbf{b = 0}$$\r \n" ); document.write( "\n" ); document.write( "### Final Vectors\r \n" ); document.write( "\n" ); document.write( "Substitute the values back into the vector definitions: \n" ); document.write( "$$\mathbf{V}_1 = \langle a, b \rangle = \langle 0, 0 \rangle$$ \n" ); document.write( "$$\mathbf{V}_2 = \langle c, d \rangle = \langle -2, 0 \rangle$$\r \n" ); document.write( "\n" ); document.write( "--- \n" ); document.write( "**Wait! Let's re-read the perpendicular condition.**\r \n" ); document.write( "\n" ); document.write( "The vector $\mathbf{V}_1 = \langle 0, 0 \rangle$ is parallel to any vector. $\mathbf{V}_2 = \langle -2, 0 \rangle$ is perpendicular to $\langle 0, 2 \rangle$ because $\langle -2, 0 \rangle \cdot \langle 0, 2 \rangle = 0$.\r \n" ); document.write( "\n" ); document.write( "However, there is a fundamental issue with $\mathbf{V}_1 = \langle 0, 0 \rangle$ being the unique solution for the parallel vector. A vector parallel to $\langle 0, 2 \rangle$ **must only have a vertical component**.\r \n" ); document.write( "\n" ); document.write( "Let $\mathbf{P} = \langle 0, 2 \rangle$. \n" ); document.write( "The space of vectors parallel to $\mathbf{P}$ is the set $S_{\parallel} = \{\langle 0, y \rangle\}$. \n" ); document.write( "The space of vectors perpendicular to $\mathbf{P}$ is the set $S_{\perp} = \{\langle x, 0 \rangle\}$ (since $2y=0$ implies $y=0$ in the dot product).\r \n" ); document.write( "\n" ); document.write( "Let $\mathbf{V}_1 = \langle 0, y_1 \rangle$ and $\mathbf{V}_2 = \langle x_2, 0 \rangle$.\r \n" ); document.write( "\n" ); document.write( "Their sum must be $\langle -2, 0 \rangle$: \n" ); document.write( "$$\mathbf{V}_1 + \mathbf{V}_2 = \langle 0 + x_2, y_1 + 0 \rangle = \langle -2, 0 \rangle$$\r \n" ); document.write( "\n" ); document.write( "By comparison of components: \n" ); document.write( "* $x_2 = -2$ \n" ); document.write( "* $y_1 = 0$\r \n" ); document.write( "\n" ); document.write( "This confirms the initial result: \n" ); document.write( "$$\mathbf{V}_1 = \langle 0, 0 \rangle$$ \n" ); document.write( "$$\mathbf{V}_2 = \langle -2, 0 \rangle$$ \n" ); document.write( " |