document.write( "Question 1166667: : Let V be the vector space of all polynomials defined on the real number line. (12 points) Suppose that T : V → V is the transformation T(p(x)) = xp′(x) where the prime denotes
\n" ); document.write( "derivative.
\n" ); document.write( "(a) Show T is a linear transformation. (b) Show T is not one-to-one.
\n" ); document.write( "

Algebra.Com's Answer #852695 by CPhill(2138)\"\" \"About 
You can put this solution on YOUR website!
That's a great problem in linear algebra! Here's the demonstration that $T$ is a linear transformation but not one-to-one.\r
\n" ); document.write( "\n" ); document.write( "Let $V$ be the vector space of all polynomials defined on the real number line, and let the transformation $T: V \to V$ be defined by $T(p(x)) = x p'(x)$.\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "## (a) Show T is a Linear Transformation\r
\n" ); document.write( "\n" ); document.write( "To show that $T$ is a **linear transformation**, we must verify two properties for any two polynomials $p(x)$ and $q(x)$ in $V$, and any scalar $c \in \mathbb{R}$:\r
\n" ); document.write( "\n" ); document.write( "### 1. Additivity: $T(p(x) + q(x)) = T(p(x)) + T(q(x))$\r
\n" ); document.write( "\n" ); document.write( "Start with the left side (LHS):
\n" ); document.write( "$$T(p(x) + q(x))$$\r
\n" ); document.write( "\n" ); document.write( "By the definition of $T$:
\n" ); document.write( "$$T(p(x) + q(x)) = x \cdot \frac{d}{dx} (p(x) + q(x))$$\r
\n" ); document.write( "\n" ); document.write( "Using the linearity of the derivative ($\frac{d}{dx}(f+g) = \frac{df}{dx} + \frac{dg}{dx}$):
\n" ); document.write( "$$T(p(x) + q(x)) = x (p'(x) + q'(x))$$\r
\n" ); document.write( "\n" ); document.write( "Distributing $x$:
\n" ); document.write( "$$T(p(x) + q(x)) = x p'(x) + x q'(x)$$\r
\n" ); document.write( "\n" ); document.write( "Now, substitute back the definition of $T$:
\n" ); document.write( "$$T(p(x) + q(x)) = T(p(x)) + T(q(x))$$\r
\n" ); document.write( "\n" ); document.write( "Since LHS = RHS, **additivity holds**.\r
\n" ); document.write( "\n" ); document.write( "### 2. Homogeneity: $T(c \cdot p(x)) = c \cdot T(p(x))$\r
\n" ); document.write( "\n" ); document.write( "Start with the left side (LHS):
\n" ); document.write( "$$T(c \cdot p(x))$$\r
\n" ); document.write( "\n" ); document.write( "By the definition of $T$:
\n" ); document.write( "$$T(c \cdot p(x)) = x \cdot \frac{d}{dx} (c \cdot p(x))$$\r
\n" ); document.write( "\n" ); document.write( "Using the property of the derivative ($\frac{d}{dx}(c \cdot f) = c \cdot \frac{df}{dx}$):
\n" ); document.write( "$$T(c \cdot p(x)) = x (c \cdot p'(x))$$\r
\n" ); document.write( "\n" ); document.write( "Rearranging the terms (moving the scalar $c$ to the front):
\n" ); document.write( "$$T(c \cdot p(x)) = c (x \cdot p'(x))$$\r
\n" ); document.write( "\n" ); document.write( "Now, substitute back the definition of $T$:
\n" ); document.write( "$$T(c \cdot p(x)) = c \cdot T(p(x))$$\r
\n" ); document.write( "\n" ); document.write( "Since LHS = RHS, **homogeneity holds**.\r
\n" ); document.write( "\n" ); document.write( "Since $T$ satisfies both additivity and homogeneity, **$T$ is a linear transformation.**\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "## (b) Show T is Not One-to-One\r
\n" ); document.write( "\n" ); document.write( "A linear transformation $T$ is **not one-to-one** (or injective) if and only if its **Kernel** (or null space), $\text{Ker}(T)$, contains more than just the zero vector.\r
\n" ); document.write( "\n" ); document.write( "The Kernel is defined as the set of all vectors $p(x) \in V$ such that $T(p(x)) = 0$ (the zero polynomial).\r
\n" ); document.write( "\n" ); document.write( "$$\text{Ker}(T) = \{ p(x) \in V \mid T(p(x)) = 0 \}$$\r
\n" ); document.write( "\n" ); document.write( "We need to find if there is a non-zero polynomial $p(x)$ such that:
\n" ); document.write( "$$T(p(x)) = x p'(x) = 0$$\r
\n" ); document.write( "\n" ); document.write( "If $x p'(x) = 0$ for all $x \in \mathbb{R}$, this implies that the derivative $p'(x)$ must be the zero polynomial:
\n" ); document.write( "$$p'(x) = 0$$\r
\n" ); document.write( "\n" ); document.write( "If the derivative of a polynomial is zero, the polynomial itself must be a **constant polynomial**:
\n" ); document.write( "$$p(x) = c$$
\n" ); document.write( "where $c$ is any real constant.\r
\n" ); document.write( "\n" ); document.write( "The polynomials $p(x) = 1$, $p(x) = 5$, or $p(x) = -10$ are all non-zero vectors in $V$ (the space of all polynomials).\r
\n" ); document.write( "\n" ); document.write( "For example, let $p(x) = 5$.
\n" ); document.write( "$$p'(x) = 0$$
\n" ); document.write( "$$T(p(x)) = T(5) = x \cdot (0) = 0$$\r
\n" ); document.write( "\n" ); document.write( "Since $\text{Ker}(T)$ contains all non-zero constant polynomials (i.e., $\text{Ker}(T) = \{p(x) = c \mid c \in \mathbb{R}\}$), the **Kernel is non-trivial** (it is not just the zero vector).\r
\n" ); document.write( "\n" ); document.write( "Therefore, **$T$ is not one-to-one.**
\n" ); document.write( "
\n" );