document.write( "Question 1166922: The distribution of scores on a standardized aptitude test is approximately normal with a mean of 520 and a standard deviation of 95. \r
\n" ); document.write( "\n" ); document.write( "What is the minimum score needed to be in the top 15% on this test? Carry your intermediate computations to at least four decimal places, and round your answer to the nearest integer.
\n" ); document.write( "

Algebra.Com's Answer #852690 by CPhill(2030)\"\" \"About 
You can put this solution on YOUR website!
```python?code_reference&code_event_index=2
\n" ); document.write( "import numpy as np
\n" ); document.write( "from scipy.stats import norm\r
\n" ); document.write( "\n" ); document.write( "# Given parameters
\n" ); document.write( "mu = 520
\n" ); document.write( "sigma = 95
\n" ); document.write( "percentile = 0.85 # Corresponds to the top 15% (100% - 15% = 85%)\r
\n" ); document.write( "\n" ); document.write( "# 1. Find the z-score corresponding to the 85th percentile
\n" ); document.write( "# Use the Percent Point Function (inverse of CDF)
\n" ); document.write( "z_score = norm.ppf(percentile)\r
\n" ); document.write( "\n" ); document.write( "# 2. Calculate the minimum score (X)
\n" ); document.write( "# X = mu + Z * sigma
\n" ); document.write( "X = mu + z_score * sigma\r
\n" ); document.write( "\n" ); document.write( "# 3. Print the intermediate z-score and the final score X
\n" ); document.write( "print(f\"Mean (mu): {mu}\")
\n" ); document.write( "print(f\"Standard Deviation (sigma): {sigma}\")
\n" ); document.write( "print(f\"Cumulative Probability: {percentile}\")
\n" ); document.write( "print(f\"Z-score (intermediate): {z_score:.4f}\")
\n" ); document.write( "print(f\"Raw Score (X): {X}\")\r
\n" ); document.write( "\n" ); document.write( "# Round the final answer to the nearest integer
\n" ); document.write( "final_score = round(X)
\n" ); document.write( "print(f\"Final score (rounded to nearest integer): {final_score}\")\r
\n" ); document.write( "\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "```text?code_stdout&code_event_index=2
\n" ); document.write( "Mean (mu): 520
\n" ); document.write( "Standard Deviation (sigma): 95
\n" ); document.write( "Cumulative Probability: 0.85
\n" ); document.write( "Z-score (intermediate): 1.0364
\n" ); document.write( "Raw Score (X): 618.46117200191
\n" ); document.write( "Final score (rounded to nearest integer): 618\r
\n" ); document.write( "\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "The minimum score needed to be in the top $15\%$ on this test is **618**.\r
\n" ); document.write( "\n" ); document.write( "This is calculated by finding the score that corresponds to the **$85^{th}$ percentile** of the normal distribution, since the top $15\%$ of scores are those above $100\% - 15\% = 85\%$.\r
\n" ); document.write( "\n" ); document.write( "-----\r
\n" ); document.write( "\n" ); document.write( "## Calculation Steps\r
\n" ); document.write( "\n" ); document.write( "### 1\. Find the Z-score\r
\n" ); document.write( "\n" ); document.write( "The first step is to find the **Z-score** ($Z$) that has $85\%$ of the area under the standard normal curve to its left.\r
\n" ); document.write( "\n" ); document.write( "Using a Z-table or statistical software (carrying intermediate computations to at least four decimal places):
\n" ); document.write( "$$Z \approx \mathbf{1.0364}$$\r
\n" ); document.write( "\n" ); document.write( "### 2\. Calculate the Raw Score\r
\n" ); document.write( "\n" ); document.write( "We use the Z-score formula rearranged to solve for the raw score ($X$):\r
\n" ); document.write( "\n" ); document.write( "$$X = \mu + Z \cdot \sigma$$\r
\n" ); document.write( "\n" ); document.write( "Where:\r
\n" ); document.write( "\n" ); document.write( " * $\mu$ (Mean) $= 520$
\n" ); document.write( " * $\sigma$ (Standard Deviation) $= 95$
\n" ); document.write( " * $Z$ (Z-score) $\approx 1.0364$\r
\n" ); document.write( "\n" ); document.write( "Substituting the values:
\n" ); document.write( "$$X = 520 + (1.0364) \cdot 95$$
\n" ); document.write( "$$X = 520 + 98.458$$
\n" ); document.write( "$$X \approx 618.458$$\r
\n" ); document.write( "\n" ); document.write( "### 3\. Round to the Nearest Integer\r
\n" ); document.write( "\n" ); document.write( "Rounding the result to the nearest integer:
\n" ); document.write( "$$618.458 \approx \mathbf{618}$$\r
\n" ); document.write( "\n" ); document.write( "A score of **618** is the minimum score required to be in the top $15\%$ of test takers.
\n" ); document.write( "
\n" );