document.write( "Question 744576: Find the remainder when \"1%5E2013+%2B+2%5E2013+%2B+3%5E2013+%2B+ellipsis+%2B+2012%5E2013%29\" is divided by 2013 .
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #852568 by ikleyn(53547)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "Find the remainder when \"1%5E2013\" + \"2%5E2013\" + \"3%5E2013\" + . . . + \"2012%5E2013%29\" is divided by 2013.
\n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "Let's group the addends in pairs\r\n" );
document.write( "\r\n" );
document.write( "    \"1%5E2013\" + \"2012%5E2013\",\r\n" );
document.write( "\r\n" );
document.write( "    \"2%5E2013\" + \"2011%5E2013\",\r\n" );
document.write( "\r\n" );
document.write( "    \"3%5E2013\" + \"2010%5E2013\",\r\n" );
document.write( "\r\n" );
document.write( "     . . . . . . . . . . . . \r\n" );
document.write( "\r\n" );
document.write( "    \"1006%5E2013\" + \"1007%5E2013\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus, all the addends in the long sum are grouped in pairs this way.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now use the theorem (= the statement) that for all integers 'a' and 'b' and odd positive integer 'n'\r\n" );
document.write( "\r\n" );
document.write( "the sum  \"a%5En\" + \"b%5En\"  is a multiple of (a+b), so the sum  \"a%5En\" + \"b%5En\"  is divisible by  (a+b)  with zero remainder.  \r\n" );
document.write( "\r\n" );
document.write( "It follows from well known polynomial decomposition \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    \"x%5En\" + \"y%5En\" = ,\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "which works for all odd integer 'n'.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now apply this theorem to each pair formed above.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Since for each pair the sum of integers, that are the bases, is 2013,  each and every pair is a multiple of 2013.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Hence, the entire sum of these pairs is a multiple of 2013.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It implies that long sum  \"1%5E2013\" + \"2%5E2013\" + \"3%5E2013\" + . . . + \"2012%5E2013%29\" is divisible by 2013,\r\n" );
document.write( "\r\n" );
document.write( "i.e. gives zero remainder when is divided by 2013.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "At this point, the problem is solved completely.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );