Algebra.Com's Answer #852568 by ikleyn(53547)  You can put this solution on YOUR website! . \n" );
document.write( "Find the remainder when + + + . . . + is divided by 2013. \n" );
document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "Let's group the addends in pairs\r\n" );
document.write( "\r\n" );
document.write( " + ,\r\n" );
document.write( "\r\n" );
document.write( " + ,\r\n" );
document.write( "\r\n" );
document.write( " + ,\r\n" );
document.write( "\r\n" );
document.write( " . . . . . . . . . . . . \r\n" );
document.write( "\r\n" );
document.write( " + .\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus, all the addends in the long sum are grouped in pairs this way.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now use the theorem (= the statement) that for all integers 'a' and 'b' and odd positive integer 'n'\r\n" );
document.write( "\r\n" );
document.write( "the sum + is a multiple of (a+b), so the sum + is divisible by (a+b) with zero remainder. \r\n" );
document.write( "\r\n" );
document.write( "It follows from well known polynomial decomposition \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " + = ,\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "which works for all odd integer 'n'.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now apply this theorem to each pair formed above.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Since for each pair the sum of integers, that are the bases, is 2013, each and every pair is a multiple of 2013.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Hence, the entire sum of these pairs is a multiple of 2013.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It implies that long sum + + + . . . + is divisible by 2013,\r\n" );
document.write( "\r\n" );
document.write( "i.e. gives zero remainder when is divided by 2013.\r\n" );
document.write( " \r \n" );
document.write( "\n" );
document.write( "At this point, the problem is solved completely.\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \n" );
document.write( " |