document.write( "Question 1167512: The results of the latest writing of the LSAT (Law School Aptitude Test) showed results that were normally distributed with a mean score of 826 and a standard deviation of 50.\r
\n" ); document.write( "\n" ); document.write( "For part (d) enter probability answers in decimal form (i.e. 0.0003 instead of 0.0300 %
\n" ); document.write( " ). Round the final answer to 4 decimals.\r
\n" ); document.write( "\n" ); document.write( " c)If a group of 59 applicants is randomly selected, what is the probability that the group average is not less than 846?
\n" ); document.write( "

Algebra.Com's Answer #852326 by CPhill(1987)\"\" \"About 
You can put this solution on YOUR website!
```python?code_reference&code_event_index=2
\n" ); document.write( "import numpy as np
\n" ); document.write( "from scipy.stats import norm\r
\n" ); document.write( "\n" ); document.write( "# Define parameters
\n" ); document.write( "mu = 826 # Population mean score
\n" ); document.write( "sigma = 50 # Population standard deviation
\n" ); document.write( "n = 59 # Sample size
\n" ); document.write( "X_bar = 846 # Sample average score\r
\n" ); document.write( "\n" ); document.write( "# 1. Calculate the Standard Error (Standard Deviation of the Sample Mean)
\n" ); document.write( "sigma_x_bar = sigma / np.sqrt(n)\r
\n" ); document.write( "\n" ); document.write( "# 2. Calculate the Z-score for X_bar = 846
\n" ); document.write( "Z = (X_bar - mu) / sigma_x_bar\r
\n" ); document.write( "\n" ); document.write( "# 3. Calculate the probability P(X_bar >= 846)
\n" ); document.write( "# P(X_bar >= 846) = 1 - P(X_bar < 846) = 1 - norm.cdf(Z)
\n" ); document.write( "probability = 1 - norm.cdf(Z)\r
\n" ); document.write( "\n" ); document.write( "# Print results rounded to 4 decimal places
\n" ); document.write( "print(f\"Population Mean (mu): {mu}\")
\n" ); document.write( "print(f\"Population Standard Deviation (sigma): {sigma}\")
\n" ); document.write( "print(f\"Sample Size (n): {n}\")
\n" ); document.write( "print(f\"Standard Error (sigma_x_bar): {sigma_x_bar:.4f}\")
\n" ); document.write( "print(f\"Z-score: {Z:.4f}\")
\n" ); document.write( "print(f\"Probability P(X_bar >= 846): {probability:.4f}\")\r
\n" ); document.write( "\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "```text?code_stdout&code_event_index=2
\n" ); document.write( "Population Mean (mu): 826
\n" ); document.write( "Population Standard Deviation (sigma): 50
\n" ); document.write( "Sample Size (n): 59
\n" ); document.write( "Standard Error (sigma_x_bar): 6.5094
\n" ); document.write( "Z-score: 3.0725
\n" ); document.write( "Probability P(X_bar >= 846): 0.0011\r
\n" ); document.write( "\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "The probability that the group average score is not less than $846$ is **0.0011**.\r
\n" ); document.write( "\n" ); document.write( "Since the individual scores are normally distributed, the **Central Limit Theorem** tells us that the distribution of the sample mean ($\bar{X}$) is also normally distributed.\r
\n" ); document.write( "\n" ); document.write( "Here is the step-by-step calculation:\r
\n" ); document.write( "\n" ); document.write( "### 1\. Identify the Distribution of the Sample Mean\r
\n" ); document.write( "\n" ); document.write( " * Population Mean ($\mu$): $826$
\n" ); document.write( " * Population Standard Deviation ($\sigma$): $50$
\n" ); document.write( " * Sample Size ($n$): $59$
\n" ); document.write( " * Target Sample Mean ($\bar{X}$): $846$\r
\n" ); document.write( "\n" ); document.write( "The mean of the sample averages is:
\n" ); document.write( "$$\mu_{\bar{X}} = \mu = 826$$\r
\n" ); document.write( "\n" ); document.write( "The standard deviation of the sample averages (Standard Error) is:
\n" ); document.write( "$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \frac{50}{\sqrt{59}} \approx 6.5094$$\r
\n" ); document.write( "\n" ); document.write( "### 2\. Calculate the Z-score\r
\n" ); document.write( "\n" ); document.write( "We standardize the target average ($\bar{X} = 846$):
\n" ); document.write( "$$Z = \frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} = \frac{846 - 826}{50/\sqrt{59}} \approx \frac{20}{6.5094} \approx 3.0725$$\r
\n" ); document.write( "\n" ); document.write( "### 3\. Calculate the Probability\r
\n" ); document.write( "\n" ); document.write( "The question asks for the probability that the group average is **not less than** $846$, which means $P(\bar{X} \ge 846)$ or $P(Z \ge 3.0725)$.\r
\n" ); document.write( "\n" ); document.write( "$$P(\bar{X} \ge 846) = 1 - P(\bar{X} < 846) = 1 - \Phi(3.0725)$$\r
\n" ); document.write( "\n" ); document.write( "Using the Z-score value:
\n" ); document.write( "$$1 - 0.998910 \approx 0.001090$$\r
\n" ); document.write( "\n" ); document.write( "Rounding the final answer to $4$ decimal places: **0.0011**.
\n" ); document.write( "
\n" );