document.write( "Question 1167599: Find an explicit formula in terms of n for a sequence
\n" ); document.write( "b0, b1, b2,
\n" ); document.write( " that satisfies
\n" ); document.write( "bk = 2b_k − 1 − 10b_k − 2 for each integer k ≥ 2
\n" ); document.write( "with initial conditions
\n" ); document.write( "b0 = 5
\n" ); document.write( " and
\n" ); document.write( "b1 = 5.
\n" ); document.write( " (Your answer will involve complex numbers.)
\n" ); document.write( "bn = for every integer n ≥ 0\r
\n" ); document.write( "\n" ); document.write( "Discrete math homework question
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #852321 by CPhill(1987)\"\" \"About 
You can put this solution on YOUR website!
The problem requires solving a second-order homogeneous linear recurrence relation with constant coefficients.\r
\n" ); document.write( "\n" ); document.write( "## Recurrence Relation and Initial Conditions\r
\n" ); document.write( "\n" ); document.write( "The recurrence relation is:
\n" ); document.write( "$$b_k = 2b_{k-1} - 10b_{k-2} \quad \text{for } k \ge 2$$
\n" ); document.write( "The initial conditions are:
\n" ); document.write( "$$b_0 = 5$$
\n" ); document.write( "$$b_1 = 5$$\r
\n" ); document.write( "\n" ); document.write( "***\r
\n" ); document.write( "\n" ); document.write( "## 1. The Characteristic Equation\r
\n" ); document.write( "\n" ); document.write( "The characteristic equation is derived by assuming a solution of the form $b_n = r^n$:
\n" ); document.write( "$$r^2 = 2r - 10$$
\n" ); document.write( "$$r^2 - 2r + 10 = 0$$\r
\n" ); document.write( "\n" ); document.write( "***\r
\n" ); document.write( "\n" ); document.write( "## 2. Finding the Roots\r
\n" ); document.write( "\n" ); document.write( "We use the quadratic formula to find the roots $r$:
\n" ); document.write( "$$r = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(10)}}{2(1)}$$
\n" ); document.write( "$$r = \frac{2 \pm \sqrt{4 - 40}}{2}$$
\n" ); document.write( "$$r = \frac{2 \pm \sqrt{-36}}{2}$$
\n" ); document.write( "$$r = \frac{2 \pm 6i}{2}$$
\n" ); document.write( "$$r_1 = 1 + 3i \quad \text{and} \quad r_2 = 1 - 3i$$\r
\n" ); document.write( "\n" ); document.write( "Since the roots are complex, we convert them to polar form, $r = \rho e^{i\phi}$:
\n" ); document.write( "$$\rho = |r_1| = \sqrt{1^2 + 3^2} = \sqrt{1 + 9} = \sqrt{10}$$
\n" ); document.write( "$$\phi = \arctan\left(\frac{3}{1}\right) = \arctan(3)$$\r
\n" ); document.write( "\n" ); document.write( "***\r
\n" ); document.write( "\n" ); document.write( "## 3. General Solution Form\r
\n" ); document.write( "\n" ); document.write( "The general solution for a recurrence with distinct complex roots $r_1$ and $r_2$ is:
\n" ); document.write( "$$b_n = c_1 r_1^n + c_2 r_2^n$$
\n" ); document.write( "Alternatively, using the polar form:
\n" ); document.write( "$$b_n = \rho^n (A \cos(n\phi) + B \sin(n\phi))$$
\n" ); document.write( "Using the roots $r_1 = 1 + 3i$ and $r_2 = 1 - 3i$, the general solution is:
\n" ); document.write( "$$b_n = c_1(1 + 3i)^n + c_2(1 - 3i)^n$$\r
\n" ); document.write( "\n" ); document.write( "***\r
\n" ); document.write( "\n" ); document.write( "## 4. Applying Initial Conditions\r
\n" ); document.write( "\n" ); document.write( "We use the initial conditions $b_0 = 5$ and $b_1 = 5$ to solve for $c_1$ and $c_2$.\r
\n" ); document.write( "\n" ); document.write( "**For $n=0$:**
\n" ); document.write( "$$b_0 = c_1(1 + 3i)^0 + c_2(1 - 3i)^0$$
\n" ); document.write( "$$5 = c_1(1) + c_2(1)$$
\n" ); document.write( "$$\mathbf{c_1 + c_2 = 5} \quad \text{(Equation 1)}$$\r
\n" ); document.write( "\n" ); document.write( "**For $n=1$:**
\n" ); document.write( "$$b_1 = c_1(1 + 3i)^1 + c_2(1 - 3i)^1$$
\n" ); document.write( "$$5 = c_1(1 + 3i) + c_2(1 - 3i)$$
\n" ); document.write( "$$5 = c_1 + 3ic_1 + c_2 - 3ic_2$$
\n" ); document.write( "$$5 = (c_1 + c_2) + 3i(c_1 - c_2)$$\r
\n" ); document.write( "\n" ); document.write( "Substitute $c_1 + c_2 = 5$ from Equation 1:
\n" ); document.write( "$$5 = 5 + 3i(c_1 - c_2)$$
\n" ); document.write( "$$0 = 3i(c_1 - c_2)$$
\n" ); document.write( "Since $3i \neq 0$, we must have:
\n" ); document.write( "$$c_1 - c_2 = 0$$
\n" ); document.write( "$$\mathbf{c_1 = c_2} \quad \text{(Equation 2)}$$\r
\n" ); document.write( "\n" ); document.write( "Substitute Equation 2 into Equation 1:
\n" ); document.write( "$$c_1 + c_1 = 5$$
\n" ); document.write( "$$2c_1 = 5$$
\n" ); document.write( "$$\mathbf{c_1 = \frac{5}{2}}$$
\n" ); document.write( "Therefore, $\mathbf{c_2 = \frac{5}{2}}$.\r
\n" ); document.write( "\n" ); document.write( "***\r
\n" ); document.write( "\n" ); document.write( "## 5. Explicit Formula\r
\n" ); document.write( "\n" ); document.write( "Substituting the values of $c_1$ and $c_2$ into the general solution:
\n" ); document.write( "$$b_n = \frac{5}{2}(1 + 3i)^n + \frac{5}{2}(1 - 3i)^n$$
\n" ); document.write( "$$b_n = \frac{5}{2} \left[ (1 + 3i)^n + (1 - 3i)^n \right]$$\r
\n" ); document.write( "\n" ); document.write( "This is the explicit formula.\r
\n" ); document.write( "\n" ); document.write( "$$b_n = \mathbf{\frac{5}{2} (1 + 3i)^n + \frac{5}{2} (1 - 3i)^n}$$\r
\n" ); document.write( "\n" ); document.write( "*(Note: While the formula involves complex numbers, the result for any integer $n \ge 0$ will always be a real number. This is because $b_n$ is the sum of a complex number and its conjugate, which always yields $2 \times \text{Re}(\text{complex number})$.)*
\n" ); document.write( "
\n" );