document.write( "Question 1167696: Setting up a prove in Fitch notation\r
\n" ); document.write( "\n" ); document.write( "Premises:
\n" ); document.write( "PvQ
\n" ); document.write( "~QvR\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Conclusion; PvR
\n" ); document.write( "

Algebra.Com's Answer #852318 by CPhill(1987)\"\" \"About 
You can put this solution on YOUR website!
## Fitch Proof Setup for $P \lor R$\r
\n" ); document.write( "\n" ); document.write( "Here is the setup for a proof of $P \lor R$ from the premises $P \lor Q$ and $\neg Q \lor R$ using Fitch notation. This proof requires a **proof by cases** (Disjunction Elimination).\r
\n" ); document.write( "\n" ); document.write( "### Goal: $\mathbf{P \lor R}$\r
\n" ); document.write( "\n" ); document.write( "| Line | Formula | Justification |
\n" ); document.write( "| :--- | :--- | :--- |
\n" ); document.write( "| 1 | $P \lor Q$ | Premise |
\n" ); document.write( "| 2 | $\neg Q \lor R$ | Premise |
\n" ); document.write( "| 3 | $\qquad \mathbf{P}$ | **Assumption** ($\lor$ Elim) |
\n" ); document.write( "| 4 | $\qquad P \lor R$ | $\lor$ Intro: 3 |
\n" ); document.write( "| 5 | $\qquad$ **Q** | **Assumption** ($\lor$ Elim) |
\n" ); document.write( "| 6 | $\qquad \neg Q \lor R$ | Repetition (or simply refer to 2) |
\n" ); document.write( "| 7 | $\qquad \qquad \mathbf{\neg Q}$ | **Assumption** ($\lor$ Elim) |
\n" ); document.write( "| 8 | $\qquad \qquad \perp$ | $\neg$ Elim: 5, 7 |
\n" ); document.write( "| 9 | $\qquad \qquad \mathbf{R}$ | **Assumption** ($\lor$ Elim) |
\n" ); document.write( "| 10 | $\qquad \qquad P \lor R$ | $\lor$ Intro: 9 |
\n" ); document.write( "| 11 | $\qquad P \lor R$ | $\lor$ Elim: 6, 7-8, 9-10 |
\n" ); document.write( "| 12 | $P \lor R$ | $\lor$ Elim: 1, 3-4, 5-11 |\r
\n" ); document.write( "\n" ); document.write( "***\r
\n" ); document.write( "\n" ); document.write( "## Completed Proof\r
\n" ); document.write( "\n" ); document.write( "The key insight is that $\neg Q \lor R$ serves as a crucial intermediate step within the second case of the main proof.\r
\n" ); document.write( "\n" ); document.write( "| Line | Formula | Justification |
\n" ); document.write( "| :--- | :--- | :--- |
\n" ); document.write( "| 1 | $P \lor Q$ | Premise |
\n" ); document.write( "| 2 | $\neg Q \lor R$ | Premise |
\n" ); document.write( "| 3 | $\qquad \mathbf{P}$ | **Assumption (Case 1)** |
\n" ); document.write( "| 4 | $\qquad P \lor R$ | $\lor$ Intro: 3 |
\n" ); document.write( "| 5 | $\qquad \mathbf{Q}$ | **Assumption (Case 2)** |
\n" ); document.write( "| 6 | $\qquad \neg Q \lor R$ | Repetition: 2 |
\n" ); document.write( "| 7 | $\qquad \qquad \mathbf{\neg Q}$ | **Assumption (Subcase 2a)** |
\n" ); document.write( "| 8 | $\qquad \qquad \perp$ | $\neg$ Elim: 5, 7 |
\n" ); document.write( "| 9 | $\qquad \qquad R$ | $\perp$ Elim: 8 |
\n" ); document.write( "| 10 | $\qquad \qquad P \lor R$ | $\lor$ Intro: 9 |
\n" ); document.write( "| 11 | $\qquad \qquad \mathbf{R}$ | **Assumption (Subcase 2b)** |
\n" ); document.write( "| 12 | $\qquad \qquad P \lor R$ | $\lor$ Intro: 11 |
\n" ); document.write( "| 13 | $\qquad P \lor R$ | $\lor$ Elim: 6, 7-10, 11-12 |
\n" ); document.write( "| 14 | $P \lor R$ | $\lor$ Elim: 1, 3-4, 5-13 |
\n" ); document.write( "
\n" );