.
\n" );
document.write( "Prove by induction that for all n >= 1
\n" );
document.write( "1^ 5 +2^ 5 +3^ 5 +^ ...+ n ^ 5 = [n ^ 2 * (n + 1) ^ 2 * (2n ^ 2 + 2n - 1)] / 12 .
\n" );
document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "(a) The base of induction: n = 1.\r\n" );
document.write( "\r\n" );
document.write( " Then the sum is one single term
, which is 1.\r\n" );
document.write( "\r\n" );
document.write( " The formula (*) at n = 1 gives \r\n" );
document.write( "\r\n" );
document.write( "
=
=
=
= 1, \r\n" );
document.write( "\r\n" );
document.write( " so the base of induction is established.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(b) The step of induction.\r\n" );
document.write( "\r\n" );
document.write( " We assume that for some integer k >= 1 this formula is valid\r\n" );
document.write( "\r\n" );
document.write( " 1^5 + 2^5 + 3^5 + . . . + k^5 =
. (1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " We want to prove that then the formula is valid for the next integer number k+1, too:\r\n" );
document.write( "\r\n" );
document.write( " 1^5 + 2^5 + 3^5 + . . . + k^5 + (k+1)^5 =
. (2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " At this point, the proof of the formula (2) is started.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " In the left side of (2), we replace the sum of the first k addends by the right side expression (1).\r\n" );
document.write( "\r\n" );
document.write( " Thus we want to prove\r\n" );
document.write( "\r\n" );
document.write( "
+
=
. (3)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " Let's transform left side of (3). We factor it, taking the common factor
out of parentheses.\r\n" );
document.write( "\r\n" );
document.write( " Then left side of (3) takes the form\r\n" );
document.write( "\r\n" );
document.write( "
= \r\n" );
document.write( "\r\n" );
document.write( " =
= \r\n" );
document.write( "\r\n" );
document.write( " =
. (4)\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( " Now, I used an online calculator to factor an expression in the internal parentheses,\r\n" );
document.write( " and the calculator produced this decomposition\r\n" );
document.write( "\r\n" );
document.write( "
=
. (5)\r\n" );
document.write( "\r\n" );
document.write( " ( the link to the calculator is https://www.pocketmath.net , the mode is \"Factor\" ) )\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " This factorization can be continued this way\r\n" );
document.write( " \r\n" );
document.write( "
=
=
. (6)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " Now, combining all pieces (4), (5) and (6) in one whole block, we have\r\n" );
document.write( "\r\n" );
document.write( "
+
=
. (7)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " It is the same as (identical to) formula (3). Thus formula (3) is proven.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(3) Due to the principle of the mathematical induction, it means that formula \r\n" );
document.write( "\r\n" );
document.write( "
=
. \r\n" );
document.write( "\r\n" );
document.write( " is proved for all integer n >= 1.\r\n" );
document.write( "
\r
\n" );
document.write( "\n" );
document.write( "Solved.\r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "