document.write( "Question 1210401: 9p^2+6p-8\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #852233 by mccravyedwin(407)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "In case the instructions were \"factor\" or \"factorise\" the quadratic.\r\n" ); document.write( "the answer is in the form\r\n" ); document.write( "\r\n" ); document.write( "(Ap+B)(Cp-D)\r\n" ); document.write( "\r\n" ); document.write( "Since BD must be negative, we choose + for the first parentheses and - for \r\n" ); document.write( "the second, so that when we FOIL, the last term will be \"-\".\r\n" ); document.write( "\r\n" ); document.write( "We choose positive integers A, B, C, and D, so that \r\n" ); document.write( "AC = 9 and BD = 8. \r\n" ); document.write( "\r\n" ); document.write( "(p+1)(9p-8) = 9p²+p-8\r\n" ); document.write( "(p+2)(9p-4) = 9p²+14p-8\r\n" ); document.write( "(p+4)(9p-2) = 9p²+34p-8\r\n" ); document.write( "(p+8)(9p-1) = 9p²+71p-8\r\n" ); document.write( "(3p+1)(3p-8) = 9p²-21p-8\r\n" ); document.write( "(3p+2)(3p-4) = 9p²-6p-8\r\n" ); document.write( "(3p+4)(3p-2) = 9p²+6p-8\r\n" ); document.write( "(3p+8)(3p-1) = 9p²+21p-8\r\n" ); document.write( "(9p+1)(p-8) = 9p²-71p-8\r\n" ); document.write( "(9p+2)(p-4) = 9p²-34p-8\r\n" ); document.write( "(9p+4)(p-2) = 9p²-14p-8\r\n" ); document.write( "(9p+8)(p-1) = 9p²-p-8\r\n" ); document.write( "\r\n" ); document.write( "Only one of them is equal to the given quadratic. \r\n" ); document.write( "Can you find which one it is?\r\n" ); document.write( "\r\n" ); document.write( "Edwin \n" ); document.write( " \n" ); document.write( " |