document.write( "Question 1167649: Suppose u, v ∈ R3. Determine if the function
\n" ); document.write( "<> = 2u1v1 + u2v2 + 4u3v3
\n" ); document.write( "is an inner product on R3. If it is not an inner product, list the axioms which do not hold.
\n" ); document.write( "

Algebra.Com's Answer #852211 by Resolver123(6)\"\" \"About 
You can put this solution on YOUR website!
We are given a function defined on \"R%5E3\" as:\r
\n" ); document.write( "\n" ); document.write( "(u, v) = \"2u%5B1%5Dv%5B1%5D+%2B+u%5B2%5Dv%5B2%5D+%2B+4u%5B3%5Dv%5B3%5D\"\r
\n" ); document.write( "\n" ); document.write( "We want to determine whether this function defines an inner product on \"R%5E3\". Recall the inner product axioms.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "A function (.,.) : \"R%5E3+%2AR%5E3\" -> \"R\" is an inner product if it satisfies the following axioms for all u, v, w in \"R%5E3\" and all scalars \"c\" in \"R\".\r
\n" ); document.write( "\n" ); document.write( "1. Symmetry: (u, v) = (v, u)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2. Linearity in the first argument (a.k.a. \"bilinearity\" for real vector spaces): (c*u + w, v) = c*(u, v) + (w, v)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "3. Positive-definiteness: (u, u) ≥ 0 and (u,u)=0 if and only if u = 0.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "1.) Check Symmetry\r
\n" ); document.write( "\n" ); document.write( "Compute both sides:\r
\n" ); document.write( "\n" ); document.write( "(u, v) = = (v,u).\r
\n" ); document.write( "\n" ); document.write( "Therefore, symmetry holds.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2.) Check Linearity in First Argument\r
\n" ); document.write( "\n" ); document.write( "Let u, w, v be in \"R%5E3\" and c be in \"R\". Let’s compute:\r
\n" ); document.write( "\n" ); document.write( "(c*u + w, v ) = = c*(u,v) + (w,v).\r
\n" ); document.write( "\n" ); document.write( "Therefore, linearity in the first argument holds.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "3.) Check for Positive-Definiteness\r
\n" ); document.write( "\n" ); document.write( "It must be shown that:\r
\n" ); document.write( "\n" ); document.write( "(u, u) = \"2u%5B1%5D%5E2+%2B+u%5B2%5D%5E2+%2B+4u%5B3%5D%5E2+\" ≥ 0 and = 0 iff u = 0.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note that each term is squared and multiplied by a positive scalar, so the whole expression is non-negative.\r
\n" ); document.write( "\n" ); document.write( "ALso, if we let (u,u) = \"2u%5B1%5D%5E2+%2B+u%5B2%5D%5E2+%2B+4u%5B3%5D%5E2=0+\", then this statement is true if and only if \"u%5B1%5D=u%5B2%5D+=+u%5B3%5D+=+0\", i.e., u = (0,0,0). \r
\n" ); document.write( "\n" ); document.write( "Therefore, positive-definiteness holds.\r
\n" ); document.write( "\n" ); document.write( "Since all three axioms (symmetry, linearity, positive-definiteness) are satisfied, (u,v) = \"2u%5B1%5Dv%5B1%5D+%2B+u%5B2%5Dv%5B2%5D+%2B+4u%5B3%5Dv%5B3%5D\" is an inner product on \"R%5E3\".
\n" ); document.write( "
\n" );