document.write( "Question 1167649: Suppose u, v ∈ R3. Determine if the function
\n" );
document.write( "<> = 2u1v1 + u2v2 + 4u3v3
\n" );
document.write( "is an inner product on R3. If it is not an inner product, list the axioms which do not hold. \n" );
document.write( "
Algebra.Com's Answer #852211 by Resolver123(6) ![]() You can put this solution on YOUR website! We are given a function defined on \n" ); document.write( "\n" ); document.write( "(u, v) = \n" ); document.write( "\n" ); document.write( "We want to determine whether this function defines an inner product on \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "A function (.,.) : \n" ); document.write( "\n" ); document.write( "1. Symmetry: (u, v) = (v, u)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "2. Linearity in the first argument (a.k.a. \"bilinearity\" for real vector spaces): (c*u + w, v) = c*(u, v) + (w, v)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "3. Positive-definiteness: (u, u) ≥ 0 and (u,u)=0 if and only if u = 0.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "1.) Check Symmetry\r \n" ); document.write( "\n" ); document.write( "Compute both sides:\r \n" ); document.write( "\n" ); document.write( "(u, v) = \n" ); document.write( "\n" ); document.write( "Therefore, symmetry holds.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "2.) Check Linearity in First Argument\r \n" ); document.write( "\n" ); document.write( "Let u, w, v be in \n" ); document.write( "\n" ); document.write( "(c*u + w, v ) = \n" ); document.write( "\n" ); document.write( "Therefore, linearity in the first argument holds.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "3.) Check for Positive-Definiteness\r \n" ); document.write( "\n" ); document.write( "It must be shown that:\r \n" ); document.write( "\n" ); document.write( "(u, u) = \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Note that each term is squared and multiplied by a positive scalar, so the whole expression is non-negative.\r \n" ); document.write( "\n" ); document.write( "ALso, if we let (u,u) = \n" ); document.write( "\n" ); document.write( "Therefore, positive-definiteness holds.\r \n" ); document.write( "\n" ); document.write( "Since all three axioms (symmetry, linearity, positive-definiteness) are satisfied, (u,v) = |