document.write( "Question 1167598: Let
\n" );
document.write( "b0, b1, b2, be the sequence defined by the explicit formula
\n" );
document.write( "bn = C · 5^n + D(−4)^n for each integer n ≥ 0,
\n" );
document.write( "where C and D are real numbers.
\n" );
document.write( "(a)
\n" );
document.write( "Find C and D so that
\n" );
document.write( "b0 = 0
\n" );
document.write( " and
\n" );
document.write( "b1 = −9.\r
\n" );
document.write( "\n" );
document.write( "b) Find C and D so that
\n" );
document.write( "b0 = 4
\n" );
document.write( " and
\n" );
document.write( "b1 = 11.\r
\n" );
document.write( "\n" );
document.write( "c)What is
\n" );
document.write( "b2 in this case? \n" );
document.write( "
Algebra.Com's Answer #852196 by Resolver123(6)![]() ![]() ![]() You can put this solution on YOUR website! (a) \n" ); document.write( "means that \n" ); document.write( "Also, inserting \n" ); document.write( "Hence, \n" ); document.write( "\n" ); document.write( "From c + d = 0, we get d = -c. \n" ); document.write( "Substituting this into the equation 5c - 4d = -9 gives 5c - 4(-c) = 5c+4c = -9, \n" ); document.write( "or 9c = -9, or c = -1. \n" ); document.write( "Therefore, c = -1, and d = -(-1) = 1.\r \n" ); document.write( "\n" ); document.write( "(b) Similarly, \n" ); document.write( "\n" ); document.write( "Substituting, 5c - 4(4 - c) = 11, or 5c - 16 + 4c = 11. \n" ); document.write( "This gives 9c = 27, or c = 3, which consequently gives d = 4 - 3 = 1.\r \n" ); document.write( "\n" ); document.write( "(c) From part (b), we get \n" ); document.write( " \n" ); document.write( " |