document.write( "Question 1210378: Find all ordered pairs x, y of real numbers such that x+y=10 and x^3+y^3=300.
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #852139 by ikleyn(52781)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "Find all ordered pairs x, y of real numbers such that x+y=10 and x^3+y^3=300.
\n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "Your starting equations are\r\n" );
document.write( "\r\n" );
document.write( "    x   + y   =  10,      (1)\r\n" );
document.write( "\r\n" );
document.write( "    x^3 + y^3 = 300.      (2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "In equation (2), use the decomposition of the sum of cubes in the left side\r\n" );
document.write( "\r\n" );
document.write( "    x^3 + y^3 = (x+y)*(x^2 - xy + y^2).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "In this decomposition, replace the factor  (x+y)  by 10, based on equation (1).\r\n" );
document.write( "You will get then\r\n" );
document.write( "\r\n" );
document.write( "    x^2 - xy + y^3 = 30.   (3)    (after dividing both sides by 10)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, now you have equivalent system of equations\r\n" );
document.write( "\r\n" );
document.write( "    x + y = 10,            (4)\r\n" );
document.write( "\r\n" );
document.write( "    x^2 - xy + y^2 = 30,   (5)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "but the degree is lowered from 3 to 2, which is good.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now, from equation (4) express  y = 10-x  and substitute it into equation (5).  You will get\r\n" );
document.write( "\r\n" );
document.write( "    x^2 - x(10-x) + (10-x)^2 = 30,\r\n" );
document.write( "\r\n" );
document.write( "    x^2 - 10x + x^2 + 100 - 20x + x^2 = 30,\r\n" );
document.write( "\r\n" );
document.write( "    3x^2 - 30x + 70 = 0.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Use the quadratic formula\r\n" );
document.write( "\r\n" );
document.write( "    \"x%5B1%2C2%5D\" = \"%2830+%2B-+sqrt%2830%5E2+-+4%2A3%2A70%29%29%2F%282%2A3%29\" = \"%2830+%2B-+sqrt%2860%29%29%2F6\" = \"5+%2B-+sqrt%2815%29%2F3\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Two values for x are  \"5+%2B+sqrt%2815%29%2F3\" = 6.290994449 (approximately)  and  \"5+-+sqrt%2815%29%2F3\" = 3.709005551  (approximately).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The ordered pairs are  (x,y) = ( \"x%5B1%5D\", \"10-x%5B1%5D\" ) = ( \"5%2Bsqrt%285%29%2F3\",\"5-sqrt%2815%29%2F3%29\" )\r\n" );
document.write( "\r\n" );
document.write( "                  and  (x,y) = ( \"x%5B2%5D\", \"10-x%5B2%5D\" ) = ( \"5-sqrt%285%29%2F3\",\"5%2Bsqrt%2815%29%2F3%29\" ).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "You may check that  6.290994449^3 + 3.709005551^3 = 300.0000000205... , so the approximate solution is very good.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "You also may check that exact solutions (x,y) satisfy equations (1) and (2) precisely.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );