document.write( "Question 1210378: Find all ordered pairs x, y of real numbers such that x+y=10 and x^3+y^3=300.
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #852138 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "x+y = 10 \n" ); document.write( "(x+y)^3 = 10^3 \n" ); document.write( "x^3+3x^2y+3xy^2+y^3 = 1000 .......... binomial theorem \n" ); document.write( "(x^3+y^3) + (3x^2y+3xy^2) = 1000 \n" ); document.write( "(x^3+y^3) + 3xy(x+y) = 1000 \n" ); document.write( "300+3xy(10) = 1000 ............. plug in x+y=10 and x^3+y^3=300 \n" ); document.write( "300+30xy = 1000 \n" ); document.write( "30xy = 1000-300 \n" ); document.write( "30xy = 700 \n" ); document.write( "xy = 700/30 \n" ); document.write( "xy = 70/3\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x+y = 10 \n" ); document.write( "x(x+y) = 10x ...... multiplying both sides by x \n" ); document.write( "x^2+xy = 10x \n" ); document.write( "x^2+70/3 = 10x ........... plug in xy = 70/3 found earlier \n" ); document.write( "3x^2+70 = 30x ........... multiply both sides by the LCD 3 \n" ); document.write( "3x^2-30x+70 = 0 \n" ); document.write( "I'll let the student finish up. \n" ); document.write( "I recommend using the quadratic formula.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "You should get two distinct real number solutions for x. \n" ); document.write( "Once determining x, you can determine the paired value of y.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Due to symmetry, if (a,b) is a solution then (b,a) is the other solution. \n" ); document.write( " \n" ); document.write( " |