document.write( "Question 1210364: Let z1 and z2 be two complex numbers such that |z1| = 5 and z1/z2 + z2/z1 = 0. Find |z1 - z2|^2. \n" ); document.write( "
Algebra.Com's Answer #852074 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Here's how to solve the problem:\r
\n" ); document.write( "\n" ); document.write( "Let $z_1$ and $z_2$ be two complex numbers.
\n" ); document.write( "We are given two conditions:
\n" ); document.write( "1. $|z_1| = 5$
\n" ); document.write( "2. $\frac{z_1}{z_2} + \frac{z_2}{z_1} = 0$\r
\n" ); document.write( "\n" ); document.write( "From the second condition, we can multiply by $z_1 z_2$ (assuming $z_1 \neq 0$ and $z_2 \neq 0$, which must be true since $|z_1| = 5$ and if $z_2=0$ the expression is undefined):
\n" ); document.write( "$z_1^2 + z_2^2 = 0$
\n" ); document.write( "$z_1^2 = -z_2^2$\r
\n" ); document.write( "\n" ); document.write( "Now, let's take the modulus of both sides:
\n" ); document.write( "$|z_1^2| = |-z_2^2|$
\n" ); document.write( "$|z_1|^2 = |-1| |z_2|^2$
\n" ); document.write( "$|z_1|^2 = 1 \cdot |z_2|^2$
\n" ); document.write( "$|z_1|^2 = |z_2|^2$\r
\n" ); document.write( "\n" ); document.write( "Since $|z_1| = 5$, we have:
\n" ); document.write( "$5^2 = |z_2|^2$
\n" ); document.write( "$25 = |z_2|^2$
\n" ); document.write( "So, $|z_2| = 5$.\r
\n" ); document.write( "\n" ); document.write( "Now we need to find $|z_1 - z_2|^2$.
\n" ); document.write( "We know that for any complex number $z$, $|z|^2 = z \bar{z}$.
\n" ); document.write( "So, $|z_1 - z_2|^2 = (z_1 - z_2)(\overline{z_1 - z_2})$
\n" ); document.write( "$|z_1 - z_2|^2 = (z_1 - z_2)(\bar{z_1} - \bar{z_2})$
\n" ); document.write( "$|z_1 - z_2|^2 = z_1 \bar{z_1} - z_1 \bar{z_2} - z_2 \bar{z_1} + z_2 \bar{z_2}$
\n" ); document.write( "$|z_1 - z_2|^2 = |z_1|^2 + |z_2|^2 - (z_1 \bar{z_2} + z_2 \bar{z_1})$\r
\n" ); document.write( "\n" ); document.write( "We already know $|z_1|^2 = 25$ and $|z_2|^2 = 25$. So:
\n" ); document.write( "$|z_1 - z_2|^2 = 25 + 25 - (z_1 \bar{z_2} + z_2 \bar{z_1})$
\n" ); document.write( "$|z_1 - z_2|^2 = 50 - (z_1 \bar{z_2} + z_2 \bar{z_1})$\r
\n" ); document.write( "\n" ); document.write( "Let's go back to the relation $z_1^2 = -z_2^2$.
\n" ); document.write( "We can write $z_1 = i z_2$ or $z_1 = -i z_2$.
\n" ); document.write( "Case 1: $z_1 = i z_2$
\n" ); document.write( "Then $\bar{z_1} = -i \bar{z_2}$.
\n" ); document.write( "Substitute these into $z_1 \bar{z_2} + z_2 \bar{z_1}$:
\n" ); document.write( "$z_1 \bar{z_2} + z_2 \bar{z_1} = (i z_2) \bar{z_2} + z_2 (-i \bar{z_2})$
\n" ); document.write( "$= i |z_2|^2 - i |z_2|^2$
\n" ); document.write( "$= 0$\r
\n" ); document.write( "\n" ); document.write( "Case 2: $z_1 = -i z_2$
\n" ); document.write( "Then $\bar{z_1} = i \bar{z_2}$.
\n" ); document.write( "Substitute these into $z_1 \bar{z_2} + z_2 \bar{z_1}$:
\n" ); document.write( "$z_1 \bar{z_2} + z_2 \bar{z_1} = (-i z_2) \bar{z_2} + z_2 (i \bar{z_2})$
\n" ); document.write( "$= -i |z_2|^2 + i |z_2|^2$
\n" ); document.write( "$= 0$\r
\n" ); document.write( "\n" ); document.write( "In both cases, $z_1 \bar{z_2} + z_2 \bar{z_1} = 0$.\r
\n" ); document.write( "\n" ); document.write( "Therefore,
\n" ); document.write( "$|z_1 - z_2|^2 = 50 - 0$
\n" ); document.write( "$|z_1 - z_2|^2 = 50$\r
\n" ); document.write( "\n" ); document.write( "The final answer is $\boxed{50}$.
\n" ); document.write( "
\n" );