document.write( "Question 1171432: #1. Log2(3x-7)+log2(x+2)=log2(x+1)\r
\n" ); document.write( "\n" ); document.write( "#2. Log2(3x+1)-log2(2-4x)>log2(5x-2)
\n" ); document.write( "

Algebra.Com's Answer #851974 by ikleyn(52776)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "#1. Log2(3x-7)+log2(x+2)=log2(x+1)\r
\n" ); document.write( "\n" ); document.write( "#2. Log2(3x+1)-log2(2-4x)>log2(5x-2)
\n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "      The solution to equation  #1  in the post by  @CPhill,  giving the answer  x = 3, \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "        is  TOTALLY,  GLOBALLY  and  FATALLY  incorrect.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "To check, it is enough to substitute x= 3 into equation #1.\r\n" );
document.write( "You will get then in the left side\r\n" );
document.write( "\r\n" );
document.write( "    log_2_(3*3-7) + log_2_(3+2) = log_2_(2) + log_2_(5) = log_2_(2*5) = log_2_(10);\r\n" );
document.write( "\r\n" );
document.write( "in the right side \r\n" );
document.write( "\r\n" );
document.write( "    log_2_(3+1) = log_2_(4),\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "and even by unarmed eyes, you see that the left side is not equal to the right side.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Contradiction which ruins the solution by @CPhill into dust.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "                    Below is my correct solution.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "Equation  log_2_(3x-7) + log_2_(x+2) = log_2_(x+1)  in its domain implies\r\n" );
document.write( "\r\n" );
document.write( "    (3x-7)*(x+2) = x+1\r\n" );
document.write( "\r\n" );
document.write( "    3x^2 - x - 14 = x+1\r\n" );
document.write( "\r\n" );
document.write( "    3x^2 - 2x - 15 = 0.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The discriminant is  b^2 - 4ac = (-2)^2 - 4*3*(-15) = 4 + 180 = 184.\r\n" );
document.write( "\r\n" );
document.write( "The discriminant is not a perfect square - so, the equation is not factorable.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Use the quadratic formula\r\n" );
document.write( "\r\n" );
document.write( "    \"x%5B1%2C2%5D\" = \"%282+%2B-+sqrt%28184%29%29%2F%282%2A3%29\" = \"%282+%2B-+sqrt%28184%29%29%2F6\" = \"%281+%2B-+sqrt%2846%29%29%2F3\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The roots are  \"x%5B1%5D\" = \"%281+-+sqrt%2846%29%29%2F3\" = -1.92744,\r\n" );
document.write( "\r\n" );
document.write( "and            \"x%5B2%5D\" = \"%281+%2B+sqrt%2846%29%29%2F3\" = 2.59411  (approximately).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The root \"x%5B1%5D\" is not in the equation's domain - so, we reject it.\r\n" );
document.write( "\r\n" );
document.write( "The root \"x%5B2%5D\"  is in the domain, so we accept it, and this root is the unique solution to equation #1.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Equation  #1  is solved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "You can check it on your own that my solution  x = 2.59411  is correct,  by substituting it into the equation.\r
\n" ); document.write( "\n" ); document.write( "I did it and obtained a perfect match.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );