document.write( "Question 1171432: #1. Log2(3x-7)+log2(x+2)=log2(x+1)\r
\n" );
document.write( "\n" );
document.write( "#2. Log2(3x+1)-log2(2-4x)>log2(5x-2) \n" );
document.write( "
Algebra.Com's Answer #851974 by ikleyn(52776)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "#1. Log2(3x-7)+log2(x+2)=log2(x+1)\r \n" ); document.write( "\n" ); document.write( "#2. Log2(3x+1)-log2(2-4x)>log2(5x-2) \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " The solution to equation #1 in the post by @CPhill, giving the answer x = 3, \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " is TOTALLY, GLOBALLY and FATALLY incorrect.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "To check, it is enough to substitute x= 3 into equation #1.\r\n" ); document.write( "You will get then in the left side\r\n" ); document.write( "\r\n" ); document.write( " log_2_(3*3-7) + log_2_(3+2) = log_2_(2) + log_2_(5) = log_2_(2*5) = log_2_(10);\r\n" ); document.write( "\r\n" ); document.write( "in the right side \r\n" ); document.write( "\r\n" ); document.write( " log_2_(3+1) = log_2_(4),\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "and even by unarmed eyes, you see that the left side is not equal to the right side.\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Contradiction which ruins the solution by @CPhill into dust.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " Below is my correct solution.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "Equation log_2_(3x-7) + log_2_(x+2) = log_2_(x+1) in its domain implies\r\n" ); document.write( "\r\n" ); document.write( " (3x-7)*(x+2) = x+1\r\n" ); document.write( "\r\n" ); document.write( " 3x^2 - x - 14 = x+1\r\n" ); document.write( "\r\n" ); document.write( " 3x^2 - 2x - 15 = 0.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The discriminant is b^2 - 4ac = (-2)^2 - 4*3*(-15) = 4 + 180 = 184.\r\n" ); document.write( "\r\n" ); document.write( "The discriminant is not a perfect square - so, the equation is not factorable.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Use the quadratic formula\r\n" ); document.write( "\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Equation #1 is solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "You can check it on your own that my solution x = 2.59411 is correct, by substituting it into the equation.\r \n" ); document.write( "\n" ); document.write( "I did it and obtained a perfect match.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |