document.write( "Question 1209738: Let r, s, and t be solutions of the equation 3x^3 - 4x^2 - 2x + 12 = 0. Compute
\n" ); document.write( "\frac{rs}{t^2} + \frac{rt}{s^2} + \frac{st}{r^2}.
\n" ); document.write( "

Algebra.Com's Answer #851885 by ikleyn(52852)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "Let r, s, and t be solutions of the equation 3x^3 - 4x^2 - 2x + 12 = 0.
\n" ); document.write( "Compute (rs)/t^2 + (rt)/s^2 + (st)/r^2.
\n" ); document.write( "~~~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The solution by  @CPhill to this problem is  INCORRECT.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The error is when he transforms the formula\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "         r³s³ + r³t³ + s³t³ - 3(-4)² = (-2/3)[(rs)² + (rt)² + (st)² - r²st - rs²t - rst²]\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "into formula\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "         r³s³ + r³t³ + s³t³ - 48 = (-2/3)[(rs)² + (rt)² + (st)² - rt(rs + st + rt)]\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Indeed,  the previous formula is symmetric relative r, s, t,  while the last formula is not symmetric.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Hence,  everything which follows makes no sense and is irrelevant.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "        Honestly,  I don't know what is the sense in solving such problems.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The idea is always the same:  use the Vieta's formulas.\r
\n" ); document.write( "\n" ); document.write( "If you know this idea,  the rest is simply arithmetic and many-line transformations of formulas.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Such problems are useful and educative in low degrees.\r
\n" ); document.write( "\n" ); document.write( "In high degrees they become non-sensical tedious exercises.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );