document.write( "Question 1209738: Let r, s, and t be solutions of the equation 3x^3 - 4x^2 - 2x + 12 = 0. Compute
\n" );
document.write( "\frac{rs}{t^2} + \frac{rt}{s^2} + \frac{st}{r^2}. \n" );
document.write( "
Algebra.Com's Answer #851885 by ikleyn(52852) You can put this solution on YOUR website! . \n" ); document.write( "Let r, s, and t be solutions of the equation 3x^3 - 4x^2 - 2x + 12 = 0. \n" ); document.write( "Compute (rs)/t^2 + (rt)/s^2 + (st)/r^2. \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The solution by @CPhill to this problem is INCORRECT.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The error is when he transforms the formula\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " r³s³ + r³t³ + s³t³ - 3(-4)² = (-2/3)[(rs)² + (rt)² + (st)² - r²st - rs²t - rst²]\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "into formula\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " r³s³ + r³t³ + s³t³ - 48 = (-2/3)[(rs)² + (rt)² + (st)² - rt(rs + st + rt)]\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Indeed, the previous formula is symmetric relative r, s, t, while the last formula is not symmetric.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Hence, everything which follows makes no sense and is irrelevant.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " Honestly, I don't know what is the sense in solving such problems.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The idea is always the same: use the Vieta's formulas.\r \n" ); document.write( "\n" ); document.write( "If you know this idea, the rest is simply arithmetic and many-line transformations of formulas.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Such problems are useful and educative in low degrees.\r \n" ); document.write( "\n" ); document.write( "In high degrees they become non-sensical tedious exercises.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |