document.write( "Question 1210241: what two numbers multiply to -16 and add to 15
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #851738 by math_tutor2020(3816)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "You can guess-and-check your way toward the answer. \n" ); document.write( "Here are all of the ways to multiply to -16 when using integers only: \n" ); document.write( "-1*16 = -16 \n" ); document.write( "-2*8 = -16 \n" ); document.write( "-4*4 = -16 \n" ); document.write( "1*(-16) = -16 \n" ); document.write( "2*(-8) = -16 \n" ); document.write( "Of that list, we see that -1 + 16 = 15. \n" ); document.write( "Therefore the two mystery numbers are -1 and 16.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "---------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Another approach is to follow these steps. \n" ); document.write( "x = one of the mystery numbers \n" ); document.write( "15-x = the other mystery number \n" ); document.write( "Note that x and 15-x add to 15. \n" ); document.write( "They must also multiply to -16, so, \n" ); document.write( "first*second = -16 \n" ); document.write( "x*(15-x) = -16 \n" ); document.write( "-x^2+15x = -16 \n" ); document.write( "-x^2+15x+16 = 0 \n" ); document.write( "x^2-15x-16 = 0 \n" ); document.write( "You might be thinking \"at this point I can factor\". \n" ); document.write( "If you used a guess-and-check method to factor, then you basically repeat the same style of steps as the first paragraph shown above. \n" ); document.write( "If you're curious, or want to check your scratch work, then x^2-15x-16 factors to (x+1)(x-16).\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Instead of factoring, let's use the quadratic formula. \n" ); document.write( "Recall the template ax^2 + bx + c = 0. \n" ); document.write( "In this case, \n" ); document.write( "a = 1, b = -15, c = -16 \n" ); document.write( "which means, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "We arrive at the same pair of values found earlier. \n" ); document.write( "If x = 16, then 15-x = 15-16 = -1 \n" ); document.write( "If x = -1, then 15-x = 15-(-1) = 16\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The quadratic formula route is useful when you have larger numbers to work with. \n" ); document.write( "For example, let's say the problem was \"Find two numbers that multiply to 476 and add to 45\". \n" ); document.write( "To solve this example problem, you would need to solve x*(45-x) = 476. \n" ); document.write( "Rearranging things leads to x^2-45x+476 = 0. \n" ); document.write( "The guess-and-check route might take a while (and it's possible to overlook some cases). \n" ); document.write( "The quadratic formula is preferable here. Using that formula yields x = 17 and x = 28 as the two solutions \n" ); document.write( "17*28 = 476 \n" ); document.write( "17+28 = 45\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-------------------------------------------------------------------------- \n" ); document.write( "--------------------------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Answer: -1 and 16 \n" ); document.write( "-1*16 = -16 \n" ); document.write( "-1+16 = 15 \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |