Algebra.Com's Answer #851719 by ikleyn(52876)  You can put this solution on YOUR website! . \n" );
document.write( "Consider .\r \n" );
document.write( "\n" );
document.write( "By finding the roots in form, and using appropriate substitutions, show that\r \n" );
document.write( "\n" );
document.write( " = 0. \n" );
document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "Equation = 0 is the same as = i.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "One root is, obviously, z = i, since = i.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Let's list all the roots \r\n" );
document.write( "\r\n" );
document.write( " = = , \r\n" );
document.write( "\r\n" );
document.write( " = = = = = i, \r\n" );
document.write( "\r\n" );
document.write( " (we just noticed it above !)\r\n" );
document.write( "\r\n" );
document.write( " = = = , \r\n" );
document.write( "\r\n" );
document.write( " = = = ,\r\n" );
document.write( "\r\n" );
document.write( " = = = .\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "Notice that and have opposite real parts and identical imaginary parts. (*)\r\n" );
document.write( "Similarly, and have opposite real parts and identical imaginary parts. (**)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "We can write the decomposition of in the form of the product of linear binomials with the roots\r\n" );
document.write( "\r\n" );
document.write( " = =\r\n" );
document.write( "\r\n" );
document.write( " = . (1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "In this decomposition (1), second and third parentheses will give the product\r\n" );
document.write( "\r\n" );
document.write( " = . (2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Here = , as we noticed in (*), and = = = -1.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Therefore, \r\n" );
document.write( "\r\n" );
document.write( " = .\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Similarly, in decomposition (1), fourth and fifth parentheses will give the product\r\n" );
document.write( "\r\n" );
document.write( " = . (3)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Here = , as we noticed in (**), and = = = -1.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Therefore, \r\n" );
document.write( "\r\n" );
document.write( " = . (4)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus, combining everything in one piece, we get\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " If = 0, then = = 0.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "QED.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "At this point, the proof is complete.\r\n" );
document.write( " \r \n" );
document.write( "\n" );
document.write( "Solved.\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "////////////////////////////\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "In her post, @MathLover1 incorrectly read the problem and incorrectly understood \n" );
document.write( "what the problem requested to prove.\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "So, her writing in her post is not a proof of the problem' statement \n" );
document.write( "and has nothing in common with what this problem requests to prove.\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "For the peace in your mind, simply ignore that post.\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \n" );
document.write( " |