document.write( "Question 1210212: How many positive integers are there whose digits strictly decrease from left to right, and have at most one even digit, and the sum of the digits is 6? \n" ); document.write( "
Algebra.Com's Answer #851625 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Let the positive integer have digits d
\n" ); document.write( "1
\n" ); document.write( "​
\n" ); document.write( " d
\n" ); document.write( "2
\n" ); document.write( "​
\n" ); document.write( " …d
\n" ); document.write( "k
\n" ); document.write( "​
\n" ); document.write( " such that 9≥d
\n" ); document.write( "1
\n" ); document.write( "​
\n" ); document.write( " >d
\n" ); document.write( "2
\n" ); document.write( "​
\n" ); document.write( " >⋯>d
\n" ); document.write( "k
\n" ); document.write( "​
\n" ); document.write( " ≥0 and d
\n" ); document.write( "1
\n" ); document.write( "​
\n" ); document.write( " +d
\n" ); document.write( "2
\n" ); document.write( "​
\n" ); document.write( " +⋯+d
\n" ); document.write( "k
\n" ); document.write( "​
\n" ); document.write( " =6.
\n" ); document.write( "The digits are strictly decreasing, so all digits are distinct.
\n" ); document.write( "The sum of the digits is 6.\r
\n" ); document.write( "\n" ); document.write( "We consider the number of even digits in the set of digits whose sum is 6.\r
\n" ); document.write( "\n" ); document.write( "Case 1: Zero even digits (all odd digits)
\n" ); document.write( "The possible distinct odd digits are 1, 3, 5.
\n" ); document.write( "The subsets of {1, 3, 5} whose sum is 6 are:
\n" ); document.write( "\begin{itemize}
\n" ); document.write( "\item Size 1: { } (sum is 0, not 6)
\n" ); document.write( "\item Size 2: {1, 5} (sum is 6). Integer: 51
\n" ); document.write( "\item Size 3: {1, ?, ?} (minimum sum is 1+3+5 = 9 > 6)
\n" ); document.write( "\end{itemize}
\n" ); document.write( "So, from this case, we have the integer 51.\r
\n" ); document.write( "\n" ); document.write( "Case 2: One even digit
\n" ); document.write( "The possible distinct even digits are 0, 2, 4, 6, 8.
\n" ); document.write( "The possible distinct odd digits are 1, 3, 5, 7, 9.\r
\n" ); document.write( "\n" ); document.write( "Subcase 2.1: One even digit
\n" ); document.write( "We need a set of distinct digits including exactly one even digit, whose sum is 6.
\n" ); document.write( "\begin{itemize}
\n" ); document.write( "\item Size 1: {6}. Integer: 6
\n" ); document.write( "\item Size 2: {e,o} where e+o=6. Possible pairs (even, odd) with e>o: (4, 2) - not strictly decreasing, (6, 0) - integer 60. Pairs with o>e: (5, 1) - already counted, (3, 3) - not distinct.
\n" ); document.write( "\item Size 3: {e,o
\n" ); document.write( "1
\n" ); document.write( "​
\n" ); document.write( " ,o
\n" ); document.write( "2
\n" ); document.write( "​
\n" ); document.write( " } where e+o
\n" ); document.write( "1
\n" ); document.write( "​
\n" ); document.write( " +o
\n" ); document.write( "2
\n" ); document.write( "​
\n" ); document.write( " =6 and o
\n" ); document.write( "1
\n" ); document.write( "​
\n" ); document.write( " >o
\n" ); document.write( "2
\n" ); document.write( "​
\n" ); document.write( " . Possible sets: {4,1,?} (sum too small), {2,3,1}. Integer 321. {0,5,1}. Integer 510.
\n" ); document.write( "\item Size 4: {e,o
\n" ); document.write( "1
\n" ); document.write( "​
\n" ); document.write( " ,o
\n" ); document.write( "2
\n" ); document.write( "​
\n" ); document.write( " ,o
\n" ); document.write( "3
\n" ); document.write( "​
\n" ); document.write( " } where e+o
\n" ); document.write( "1
\n" ); document.write( "​
\n" ); document.write( " +o
\n" ); document.write( "2
\n" ); document.write( "​
\n" ); document.write( " +o
\n" ); document.write( "3
\n" ); document.write( "​
\n" ); document.write( " =6. Possible sets: {4,1,?,?}, {2,3,1,0}. Integer 3210.
\n" ); document.write( "\end{itemize}\r
\n" ); document.write( "\n" ); document.write( "Let's enumerate based on the number of digits:
\n" ); document.write( "1 digit: 6 (one even digit)
\n" ); document.write( "2 digits:\r
\n" ); document.write( "\n" ); document.write( "One even, one odd: 51 (zero even), 42 (one even), 60 (one even) 3 digits:
\n" ); document.write( "One even, two odd: 321 (zero even), 510 (one even) 4 digits:
\n" ); document.write( "One even, three odd: 3210 (one even)
\n" ); document.write( "The integers are:
\n" ); document.write( "From Case 1: 51 (0 even digits)
\n" ); document.write( "From Case 2: 6 (1 even digit), 42 (1 even digit), 60 (1 even digit), 321 (0 even digits), 510 (1 even digit), 3210 (1 even digit)\r
\n" ); document.write( "\n" ); document.write( "The positive integers with strictly decreasing digits and at most one even digit, and sum of digits equal to 6 are: 6, 51, 42, 60, 321, 510, 3210.
\n" ); document.write( "There are 7 such integers.\r
\n" ); document.write( "\n" ); document.write( "Final Answer: The final answer is
\n" ); document.write( "7
\n" ); document.write( "​
\n" ); document.write( "
\n" ); document.write( "
\n" );