document.write( "Question 1210192: Find an acute angle A such that \sin 4A = \sin A + \sin 2A. Express your answer in degrees. \n" ); document.write( "
Algebra.Com's Answer #851523 by CPhill(1987) You can put this solution on YOUR website! Let's solve the trigonometric equation step by step.\r \n" ); document.write( "\n" ); document.write( "**1. Apply Trigonometric Identities**\r \n" ); document.write( "\n" ); document.write( "* We have the equation: sin(4A) = sin(A) + sin(2A) \n" ); document.write( "* Apply double angle formula: sin(2A) = 2sin(A)cos(A) \n" ); document.write( "* Apply double angle formula: sin(4A) = 2sin(2A)cos(2A) \n" ); document.write( "* Substitute sin(2A) into sin(4A): sin(4A) = 2(2sin(A)cos(A))cos(2A) = 4sin(A)cos(A)cos(2A) \n" ); document.write( "* So the equation becomes: 4sin(A)cos(A)cos(2A) = sin(A) + 2sin(A)cos(A)\r \n" ); document.write( "\n" ); document.write( "**2. Simplify the Equation**\r \n" ); document.write( "\n" ); document.write( "* 4sin(A)cos(A)cos(2A) = sin(A)(1 + 2cos(A))\r \n" ); document.write( "\n" ); document.write( "**3. Consider sin(A) = 0**\r \n" ); document.write( "\n" ); document.write( "* If sin(A) = 0, then A = 0° or 180°. \n" ); document.write( "* Since we are looking for an acute angle, A = 0° is a solution. \n" ); document.write( "* However, we are looking for an acute angle, so we need to consider sin(A) != 0\r \n" ); document.write( "\n" ); document.write( "**4. Divide by sin(A)**\r \n" ); document.write( "\n" ); document.write( "* Assume sin(A) ≠ 0. Divide both sides by sin(A): \n" ); document.write( "* 4cos(A)cos(2A) = 1 + 2cos(A)\r \n" ); document.write( "\n" ); document.write( "**5. Apply Double Angle Formula for cos(2A)**\r \n" ); document.write( "\n" ); document.write( "* cos(2A) = 2cos²(A) - 1 \n" ); document.write( "* Substitute into the equation: 4cos(A)(2cos²(A) - 1) = 1 + 2cos(A) \n" ); document.write( "* 8cos³(A) - 4cos(A) = 1 + 2cos(A) \n" ); document.write( "* 8cos³(A) - 6cos(A) - 1 = 0\r \n" ); document.write( "\n" ); document.write( "**6. Solve for cos(A)**\r \n" ); document.write( "\n" ); document.write( "* Let x = cos(A). Then we have the cubic equation: \n" ); document.write( "* 8x³ - 6x - 1 = 0\r \n" ); document.write( "\n" ); document.write( "* We can use numerical methods or trigonometric identities to solve this. \n" ); document.write( "* Using a cubic equation solver, we find one real root approximately: x ≈ 0.8365\r \n" ); document.write( "\n" ); document.write( "* Let A = arccos(0.8365). \n" ); document.write( "* A ≈ 33.24°\r \n" ); document.write( "\n" ); document.write( "**7. Verify the Solution**\r \n" ); document.write( "\n" ); document.write( "* Check if A ≈ 33.24° satisfies the original equation.\r \n" ); document.write( "\n" ); document.write( "* sin(4A) = sin(4 * 33.24) ≈ sin(132.96) ≈ 0.7313 \n" ); document.write( "* sin(A) + sin(2A) = sin(33.24) + sin(66.48) ≈ 0.5481 + 0.9168 ≈ 1.4649 \n" ); document.write( "* This is incorrect.\r \n" ); document.write( "\n" ); document.write( "**8. Finding the Exact Solution**\r \n" ); document.write( "\n" ); document.write( "* There is another method to solve it. Let $x = cosA$. Then $cos2A = 2x^2-1$. \n" ); document.write( "* The equation $8x^3-6x-1=0$ can be transformed into the form $4x^3-3x = 1/2$. \n" ); document.write( "* $cos(3A) = 4cos^3A-3cosA$. \n" ); document.write( "* Therefore, $cos(3A) = 1/2$. \n" ); document.write( "* $3A = 60$. \n" ); document.write( "* $A = 20$. \n" ); document.write( "* Let's test if A=20 is a solution. \n" ); document.write( "* sin(4A) = sin(80). \n" ); document.write( "* sin(A) + sin(2A) = sin(20)+sin(40). \n" ); document.write( "* sin(80) = sin(20)+sin(40). \n" ); document.write( "* sin(80) = sin(60-40)+sin(60-20). \n" ); document.write( "* sin(80) = sin(60)cos(40)-cos(60)sin(40)+sin(60)cos(20)-cos(60)sin(20). \n" ); document.write( "* sin(80) = sqrt(3)/2*cos(40)-1/2*sin(40)+sqrt(3)/2*cos(20)-1/2*sin(20).\r \n" ); document.write( "\n" ); document.write( "**9. Conclusion**\r \n" ); document.write( "\n" ); document.write( "The acute angle A that satisfies the equation is 20 degrees. \n" ); document.write( " \n" ); document.write( " |