document.write( "Question 1168824: Based on historical data, your manager believes that 30% of the company's orders come from first-time customers. A random sample of 97 orders will be used to estimate the proportion of first-time-customers.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "What is the probability that the sample proportion is greater than than 0.2?\r
\n" ); document.write( "\n" ); document.write( "Answer = (Enter your answer as a number accurate to 4 decimal places.)
\n" ); document.write( "

Algebra.Com's Answer #851512 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Let's solve this problem step-by-step.\r
\n" ); document.write( "\n" ); document.write( "**1. Define the Parameters**\r
\n" ); document.write( "\n" ); document.write( "* Population proportion (p) = 0.30
\n" ); document.write( "* Sample size (n) = 97
\n" ); document.write( "* Sample proportion (p̂)
\n" ); document.write( "* We want to find P(p̂ > 0.2)\r
\n" ); document.write( "\n" ); document.write( "**2. Check the Conditions for a Normal Approximation**\r
\n" ); document.write( "\n" ); document.write( "To use the normal approximation for the sampling distribution of p̂, we need to check if:\r
\n" ); document.write( "\n" ); document.write( "* np ≥ 10
\n" ); document.write( "* n(1 - p) ≥ 10\r
\n" ); document.write( "\n" ); document.write( "Let's check:\r
\n" ); document.write( "\n" ); document.write( "* np = 97 * 0.30 = 29.1 ≥ 10 (condition met)
\n" ); document.write( "* n(1 - p) = 97 * 0.70 = 67.9 ≥ 10 (condition met)\r
\n" ); document.write( "\n" ); document.write( "Since both conditions are met, we can use the normal approximation.\r
\n" ); document.write( "\n" ); document.write( "**3. Calculate the Mean and Standard Deviation of the Sampling Distribution**\r
\n" ); document.write( "\n" ); document.write( "* Mean of p̂ (μ_p̂) = p = 0.30
\n" ); document.write( "* Standard deviation of p̂ (σ_p̂) = √[p(1 - p) / n]
\n" ); document.write( " * σ_p̂ = √[(0.30 * 0.70) / 97]
\n" ); document.write( " * σ_p̂ = √(0.21 / 97)
\n" ); document.write( " * σ_p̂ = √0.00216494845
\n" ); document.write( " * σ_p̂ ≈ 0.04652\r
\n" ); document.write( "\n" ); document.write( "**4. Calculate the Z-score**\r
\n" ); document.write( "\n" ); document.write( "We want to find P(p̂ > 0.2). To do this, we need to convert 0.2 to a z-score:\r
\n" ); document.write( "\n" ); document.write( "* z = (p̂ - μ_p̂) / σ_p̂
\n" ); document.write( "* z = (0.2 - 0.30) / 0.04652
\n" ); document.write( "* z = -0.10 / 0.04652
\n" ); document.write( "* z ≈ -2.15\r
\n" ); document.write( "\n" ); document.write( "**5. Find the Probability**\r
\n" ); document.write( "\n" ); document.write( "We want to find P(p̂ > 0.2), which is equivalent to P(Z > -2.15).\r
\n" ); document.write( "\n" ); document.write( "* Using a standard normal distribution table or calculator, we find:
\n" ); document.write( " * P(Z < -2.15) ≈ 0.0158
\n" ); document.write( "* Since P(Z > -2.15) = 1-P(Z < -2.15)
\n" ); document.write( " * P(Z > -2.15) = 1-0.0158 = 0.9842\r
\n" ); document.write( "\n" ); document.write( "**6. Final Answer**\r
\n" ); document.write( "\n" ); document.write( "The probability that the sample proportion is greater than 0.2 is approximately 0.9842.\r
\n" ); document.write( "\n" ); document.write( "Answer = 0.9842
\n" ); document.write( "
\n" ); document.write( "
\n" );