document.write( "Question 1168921: Let vector p=2−x+x^2 and let B be the basis for P2:
\n" );
document.write( "{1+x,1+x^2,x+x^2}.
\n" );
document.write( "Find [p]B. \n" );
document.write( "
Algebra.Com's Answer #851470 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Solution: \n" ); document.write( "Let the basis $B = \{v_1, v_2, v_3\}$, where $v_1 = 1+x$, $v_2 = 1+x^2$, and $v_3 = x+x^2$. \n" ); document.write( "We are given the vector $p = 2 - x + x^2$. \n" ); document.write( "We need to find the coordinates of $p$ with respect to the basis $B$, which means finding scalars $c_1, c_2, c_3$ such that: \n" ); document.write( "$p = c_1 v_1 + c_2 v_2 + c_3 v_3$ \n" ); document.write( "$2 - x + x^2 = c_1(1+x) + c_2(1+x^2) + c_3(x+x^2)$ \n" ); document.write( "$2 - x + x^2 = c_1 + c_1 x + c_2 + c_2 x^2 + c_3 x + c_3 x^2$\r \n" ); document.write( "\n" ); document.write( "Group the terms by powers of $x$: \n" ); document.write( "$2 - x + x^2 = (c_1 + c_2) + (c_1 + c_3)x + (c_2 + c_3)x^2$\r \n" ); document.write( "\n" ); document.write( "For this equation to hold for all $x$, the coefficients of the corresponding powers of $x$ on both sides must be equal. This gives us a system of linear equations: \n" ); document.write( "1. Coefficient of $x^0$ (constant term): $c_1 + c_2 = 2$ \n" ); document.write( "2. Coefficient of $x^1$ (term with $x$): $c_1 + c_3 = -1$ \n" ); document.write( "3. Coefficient of $x^2$ (term with $x^2$): $c_2 + c_3 = 1$\r \n" ); document.write( "\n" ); document.write( "We need to solve this system for $c_1, c_2, c_3$. \n" ); document.write( "From equation (1), $c_2 = 2 - c_1$. \n" ); document.write( "From equation (2), $c_3 = -1 - c_1$.\r \n" ); document.write( "\n" ); document.write( "Substitute these expressions for $c_2$ and $c_3$ into equation (3): \n" ); document.write( "$(2 - c_1) + (-1 - c_1) = 1$ \n" ); document.write( "$1 - 2c_1 = 1$ \n" ); document.write( "$-2c_1 = 0$ \n" ); document.write( "$c_1 = 0$\r \n" ); document.write( "\n" ); document.write( "Now, substitute the value of $c_1$ back into the expressions for $c_2$ and $c_3$: \n" ); document.write( "$c_2 = 2 - c_1 = 2 - 0 = 2$ \n" ); document.write( "$c_3 = -1 - c_1 = -1 - 0 = -1$\r \n" ); document.write( "\n" ); document.write( "So, the coordinates of $p$ with respect to the basis $B$ are $c_1 = 0$, $c_2 = 2$, and $c_3 = -1$. \n" ); document.write( "The coordinate vector $[p]_B$ is given by: \n" ); document.write( "$[p]_B = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}$\r \n" ); document.write( "\n" ); document.write( "To verify, we can substitute these values back into the linear combination: \n" ); document.write( "$0(1+x) + 2(1+x^2) + (-1)(x+x^2) = 0 + 2 + 2x^2 - x - x^2 = 2 - x + x^2 = p$.\r \n" ); document.write( "\n" ); document.write( "Final Answer: The final answer is $\boxed{\begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}}$ \n" ); document.write( " |