document.write( "Question 1169043: Using trigonometry determine the resultant vector\r
\n" );
document.write( "\n" );
document.write( "a) 8m [N] and 12 m [W]\r
\n" );
document.write( "\n" );
document.write( "b) 15N [30degreesSofE] and 8 N [E] \n" );
document.write( "
Algebra.Com's Answer #851457 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Let's determine the resultant vector for each case using trigonometry.\r \n" ); document.write( "\n" ); document.write( "**a) 8 m [N] and 12 m [W]**\r \n" ); document.write( "\n" ); document.write( "1. **Represent the vectors in component form:** \n" ); document.write( " * Vector 1 (A): 8 m [N] lies along the positive y-axis. \n" ); document.write( " $\mathbf{A} = (0, 8)$ \n" ); document.write( " * Vector 2 (B): 12 m [W] lies along the negative x-axis. \n" ); document.write( " $\mathbf{B} = (-12, 0)$\r \n" ); document.write( "\n" ); document.write( "2. **Add the component vectors to find the resultant vector (R):** \n" ); document.write( " $\mathbf{R} = \mathbf{A} + \mathbf{B} = (0 + (-12), 8 + 0) = (-12, 8)$\r \n" ); document.write( "\n" ); document.write( "3. **Calculate the magnitude of the resultant vector:** \n" ); document.write( " $|\mathbf{R}| = \sqrt{R_x^2 + R_y^2} = \sqrt{(-12)^2 + (8)^2} = \sqrt{144 + 64} = \sqrt{208}$ \n" ); document.write( " $|\mathbf{R}| = \sqrt{16 \times 13} = 4\sqrt{13} \approx 14.42$ m\r \n" ); document.write( "\n" ); document.write( "4. **Calculate the direction of the resultant vector:** \n" ); document.write( " The angle $\theta$ that the resultant vector makes with the positive x-axis can be found using the arctangent function: \n" ); document.write( " $\tan(\theta) = \frac{R_y}{R_x} = \frac{8}{-12} = -\frac{2}{3}$ \n" ); document.write( " $\theta = \arctan(-\frac{2}{3}) \approx -33.69^\circ$\r \n" ); document.write( "\n" ); document.write( " Since $R_x$ is negative and $R_y$ is positive, the resultant vector lies in the second quadrant. To find the angle relative to the positive x-axis, we add $180^\circ$: \n" ); document.write( " $\theta_{actual} = -33.69^\circ + 180^\circ = 146.31^\circ$\r \n" ); document.write( "\n" ); document.write( " To express the direction in a standard compass bearing format, we can find the angle relative to the North or West direction. The angle with the negative x-axis (West) is $33.69^\circ$. Therefore, the direction is approximately $33.69^\circ$ North of West [N $33.69^\circ$ W].\r \n" ); document.write( "\n" ); document.write( " Alternatively, the angle with the positive y-axis (North) is $90^\circ - 33.69^\circ = 56.31^\circ$. Therefore, the direction is approximately $56.31^\circ$ West of North [W $56.31^\circ$ N].\r \n" ); document.write( "\n" ); document.write( " Both [N $33.69^\circ$ W] and [W $56.31^\circ$ N] are correct ways to express the direction.\r \n" ); document.write( "\n" ); document.write( "**Resultant vector for a): Approximately 14.42 m [N 33.69° W]**\r \n" ); document.write( "\n" ); document.write( "**b) 15 N [30° S of E] and 8 N [E]**\r \n" ); document.write( "\n" ); document.write( "1. **Represent the vectors in component form:** \n" ); document.write( " * Vector 1 (A): 15 N [30° S of E] \n" ); document.write( " $A_x = |\mathbf{A}| \cos(30^\circ) = 15 \times \frac{\sqrt{3}}{2} \approx 15 \times 0.866 = 12.99$ N (East) \n" ); document.write( " $A_y = -|\mathbf{A}| \sin(30^\circ) = -15 \times \frac{1}{2} = -7.5$ N (South) \n" ); document.write( " $\mathbf{A} = (12.99, -7.5)$ \n" ); document.write( " * Vector 2 (B): 8 N [E] lies along the positive x-axis. \n" ); document.write( " $\mathbf{B} = (8, 0)$\r \n" ); document.write( "\n" ); document.write( "2. **Add the component vectors to find the resultant vector (R):** \n" ); document.write( " $\mathbf{R} = \mathbf{A} + \mathbf{B} = (12.99 + 8, -7.5 + 0) = (20.99, -7.5)$\r \n" ); document.write( "\n" ); document.write( "3. **Calculate the magnitude of the resultant vector:** \n" ); document.write( " $|\mathbf{R}| = \sqrt{R_x^2 + R_y^2} = \sqrt{(20.99)^2 + (-7.5)^2} = \sqrt{440.5801 + 56.25} = \sqrt{496.8301} \approx 22.29$ N\r \n" ); document.write( "\n" ); document.write( "4. **Calculate the direction of the resultant vector:** \n" ); document.write( " The angle $\theta$ that the resultant vector makes with the positive x-axis (East) can be found using the arctangent function: \n" ); document.write( " $\tan(\theta) = \frac{R_y}{R_x} = \frac{-7.5}{20.99} \approx -0.3573$ \n" ); document.write( " $\theta = \arctan(-0.3573) \approx -19.67^\circ$\r \n" ); document.write( "\n" ); document.write( " The negative angle indicates that the resultant vector is below the positive x-axis. Therefore, the direction is approximately $19.67^\circ$ South of East [S $19.67^\circ$ E].\r \n" ); document.write( "\n" ); document.write( "**Resultant vector for b): Approximately 22.29 N [S 19.67° E]** \n" ); document.write( " |