document.write( "Question 1169051: The sample of work produced by lathe is 10000.
\n" ); document.write( "a. If the machine doubled this production every 20 minutes, how much will it produce
\n" ); document.write( "in one hour?
\n" ); document.write( "b. How long will it take the machine to produce 8 million?
\n" ); document.write( "

Algebra.Com's Answer #851455 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Let the initial production of the lathe be $P_0 = 10000$.\r
\n" ); document.write( "\n" ); document.write( "**a. Production in one hour:**\r
\n" ); document.write( "\n" ); document.write( "One hour has 60 minutes. The machine doubles its production every 20 minutes. So, in one hour, the production will double $60 / 20 = 3$ times.\r
\n" ); document.write( "\n" ); document.write( "* After the first 20 minutes: $P_1 = P_0 \times 2 = 10000 \times 2 = 20000$
\n" ); document.write( "* After the next 20 minutes (total 40 minutes): $P_2 = P_1 \times 2 = 20000 \times 2 = 40000$
\n" ); document.write( "* After the final 20 minutes (total 60 minutes or one hour): $P_3 = P_2 \times 2 = 40000 \times 2 = 80000$\r
\n" ); document.write( "\n" ); document.write( "Alternatively, we can use the formula:
\n" ); document.write( "$P(t) = P_0 \times 2^{t/d}$
\n" ); document.write( "where:
\n" ); document.write( "* $P(t)$ is the production after time $t$
\n" ); document.write( "* $P_0$ is the initial production
\n" ); document.write( "* $t$ is the total time
\n" ); document.write( "* $d$ is the doubling time\r
\n" ); document.write( "\n" ); document.write( "For one hour (60 minutes):
\n" ); document.write( "$P(60) = 10000 \times 2^{60/20}$
\n" ); document.write( "$P(60) = 10000 \times 2^3$
\n" ); document.write( "$P(60) = 10000 \times 8$
\n" ); document.write( "$P(60) = 80000$\r
\n" ); document.write( "\n" ); document.write( "So, the machine will produce **80,000** units in one hour.\r
\n" ); document.write( "\n" ); document.write( "**b. Time to produce 8 million:**\r
\n" ); document.write( "\n" ); document.write( "We want to find the time $t$ when the production $P(t)$ reaches 8,000,000.
\n" ); document.write( "$P(t) = 10000 \times 2^{t/20} = 8000000$\r
\n" ); document.write( "\n" ); document.write( "Divide both sides by 10000:
\n" ); document.write( "$2^{t/20} = \frac{8000000}{10000}$
\n" ); document.write( "$2^{t/20} = 800$\r
\n" ); document.write( "\n" ); document.write( "To solve for $t$, we can take the logarithm of both sides (using base 2 or natural logarithm):\r
\n" ); document.write( "\n" ); document.write( "Using base 2 logarithm:
\n" ); document.write( "$\log_2(2^{t/20}) = \log_2(800)$
\n" ); document.write( "$\frac{t}{20} = \log_2(800)$\r
\n" ); document.write( "\n" ); document.write( "We know that $2^9 = 512$ and $2^{10} = 1024$. So, $\log_2(800)$ is between 9 and 10.
\n" ); document.write( "$\log_2(800) = \log_2(8 \times 100) = \log_2(2^3 \times 100) = 3 + \log_2(100)$
\n" ); document.write( "Since $2^6 = 64$ and $2^7 = 128$, $\log_2(100)$ is between 6 and 7 (approximately 6.64).
\n" ); document.write( "$\log_2(800) \approx 3 + 6.64 = 9.64$\r
\n" ); document.write( "\n" ); document.write( "Now, solve for $t$:
\n" ); document.write( "$t = 20 \times \log_2(800)$
\n" ); document.write( "$t \approx 20 \times 9.64$
\n" ); document.write( "$t \approx 192.8$ minutes\r
\n" ); document.write( "\n" ); document.write( "Alternatively, using natural logarithm:
\n" ); document.write( "$\ln(2^{t/20}) = \ln(800)$
\n" ); document.write( "$\frac{t}{20} \ln(2) = \ln(800)$
\n" ); document.write( "$t = 20 \times \frac{\ln(800)}{\ln(2)}$
\n" ); document.write( "$t \approx 20 \times \frac{6.6846}{0.6931}$
\n" ); document.write( "$t \approx 20 \times 9.644$
\n" ); document.write( "$t \approx 192.88$ minutes\r
\n" ); document.write( "\n" ); document.write( "So, it will take approximately **192.88 minutes** for the machine to produce 8 million units.\r
\n" ); document.write( "\n" ); document.write( "To express this in hours and minutes:
\n" ); document.write( "$192.88 \text{ minutes} = 3 \text{ hours and } 12.88 \text{ minutes}$
\n" ); document.write( "$0.88 \text{ minutes} \times 60 \text{ seconds/minute} \approx 53 \text{ seconds}$\r
\n" ); document.write( "\n" ); document.write( "So, it will take approximately 3 hours, 12 minutes, and 53 seconds.\r
\n" ); document.write( "\n" ); document.write( "Final Answers:
\n" ); document.write( "a. The machine will produce **80,000** units in one hour.
\n" ); document.write( "b. It will take approximately **192.88 minutes** (or about 3 hours, 12 minutes, and 53 seconds) for the machine to produce 8 million units.
\n" ); document.write( "
\n" );