document.write( "Question 1210147: In \triangle ABC, we have AB = AC = 4 and \angle BAC = 45^\circ. If M is the midpoint of BC, then find AM^2. \n" ); document.write( "
Algebra.Com's Answer #851369 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Let $\triangle ABC$ be a triangle with $AB = AC = 4$ and $\angle BAC = 45^\circ$. Let $M$ be the midpoint of $BC$. We want to find $AM^2$.\r
\n" ); document.write( "\n" ); document.write( "We can use the Law of Cosines to find $BC$.
\n" ); document.write( "$$BC^2 = AB^2 + AC^2 - 2(AB)(AC)\cos(\angle BAC)$$
\n" ); document.write( "$$BC^2 = 4^2 + 4^2 - 2(4)(4)\cos(45^\circ)$$
\n" ); document.write( "$$BC^2 = 16 + 16 - 32\left(\frac{\sqrt{2}}{2}\right)$$
\n" ); document.write( "$$BC^2 = 32 - 16\sqrt{2}$$
\n" ); document.write( "$$BC = \sqrt{32 - 16\sqrt{2}} = 4\sqrt{2 - \sqrt{2}}$$\r
\n" ); document.write( "\n" ); document.write( "Since $M$ is the midpoint of $BC$, we can use Apollonius' Theorem:
\n" ); document.write( "$$AB^2 + AC^2 = 2(AM^2 + BM^2)$$
\n" ); document.write( "$$4^2 + 4^2 = 2(AM^2 + BM^2)$$
\n" ); document.write( "$$32 = 2(AM^2 + BM^2)$$
\n" ); document.write( "$$16 = AM^2 + BM^2$$\r
\n" ); document.write( "\n" ); document.write( "We know $BM = \frac{1}{2}BC$, so $BM^2 = \frac{1}{4}BC^2 = \frac{1}{4}(32 - 16\sqrt{2}) = 8 - 4\sqrt{2}$.\r
\n" ); document.write( "\n" ); document.write( "Substituting $BM^2$ into the equation from Apollonius' Theorem:
\n" ); document.write( "$$16 = AM^2 + (8 - 4\sqrt{2})$$
\n" ); document.write( "$$AM^2 = 16 - (8 - 4\sqrt{2})$$
\n" ); document.write( "$$AM^2 = 8 + 4\sqrt{2}$$\r
\n" ); document.write( "\n" ); document.write( "Thus, $AM^2 = 8 + 4\sqrt{2}$.\r
\n" ); document.write( "\n" ); document.write( "Final Answer: The final answer is $\boxed{8 + 4 \sqrt{2}}$
\n" ); document.write( "
\n" ); document.write( "
\n" );