document.write( "Question 1210146: What is the equation of the reflection of the line y = 2x + 1 across the line y = 5x - 3? Give your answer in slope-intercept form.
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #851368 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Let $L_1$ be the line $y = 2x + 1$, and let $L_2$ be the line $y = 5x - 3$. \n" ); document.write( "We want to find the equation of the reflection of $L_1$ across $L_2$.\r \n" ); document.write( "\n" ); document.write( "Let $P(x_1, y_1)$ be a point on $L_1$, so $y_1 = 2x_1 + 1$. \n" ); document.write( "Let $P'(x_2, y_2)$ be the reflection of $P$ across $L_2$. \n" ); document.write( "The midpoint of $PP'$ lies on $L_2$, and $PP'$ is perpendicular to $L_2$.\r \n" ); document.write( "\n" ); document.write( "The midpoint of $PP'$ is $M = \left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$. \n" ); document.write( "Since $M$ lies on $L_2$, we have \n" ); document.write( "$$\frac{y_1+y_2}{2} = 5\left(\frac{x_1+x_2}{2}\right) - 3$$ \n" ); document.write( "$$y_1+y_2 = 5(x_1+x_2) - 6$$ \n" ); document.write( "$$y_1+y_2 = 5x_1+5x_2 - 6$$ \n" ); document.write( "Substituting $y_1 = 2x_1 + 1$, we get \n" ); document.write( "$$2x_1+1+y_2 = 5x_1+5x_2 - 6$$ \n" ); document.write( "$$y_2 = 3x_1+5x_2 - 7 \quad (*)$$\r \n" ); document.write( "\n" ); document.write( "Since $PP'$ is perpendicular to $L_2$, the slope of $PP'$ is the negative reciprocal of the slope of $L_2$. \n" ); document.write( "The slope of $L_2$ is 5, so the slope of $PP'$ is $-\frac{1}{5}$. \n" ); document.write( "Thus, \n" ); document.write( "$$\frac{y_2-y_1}{x_2-x_1} = -\frac{1}{5}$$ \n" ); document.write( "$$5(y_2-y_1) = -(x_2-x_1)$$ \n" ); document.write( "$$5y_2 - 5y_1 = -x_2 + x_1$$ \n" ); document.write( "Substituting $y_1 = 2x_1 + 1$, we get \n" ); document.write( "$$5y_2 - 5(2x_1+1) = -x_2 + x_1$$ \n" ); document.write( "$$5y_2 - 10x_1 - 5 = -x_2 + x_1$$ \n" ); document.write( "$$5y_2 = 11x_1 - x_2 + 5 \quad (**)$$\r \n" ); document.write( "\n" ); document.write( "From (*), we have $3x_1 = y_2 - 5x_2 + 7$. \n" ); document.write( "Substituting this into (**), we get \n" ); document.write( "$$5y_2 = \frac{11}{3}(y_2 - 5x_2 + 7) - x_2 + 5$$ \n" ); document.write( "$$15y_2 = 11y_2 - 55x_2 + 77 - 3x_2 + 15$$ \n" ); document.write( "$$4y_2 = -58x_2 + 92$$ \n" ); document.write( "$$y_2 = -\frac{58}{4}x_2 + \frac{92}{4}$$ \n" ); document.write( "$$y_2 = -\frac{29}{2}x_2 + 23$$\r \n" ); document.write( "\n" ); document.write( "Thus, the equation of the reflected line is $y = -\frac{29}{2}x + 23$.\r \n" ); document.write( "\n" ); document.write( "Final Answer: The final answer is $\boxed{y = -\frac{29}{2} x + 23}$ \n" ); document.write( " \n" ); document.write( " |