document.write( "Question 1210143: Let R be the image of rotating point P=(4,0) counterclockwise by 60^\circ degrees around Q=(12,-7). What is PR? \n" ); document.write( "
Algebra.Com's Answer #851365 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Let $P = (4, 0)$ and $Q = (12, -7)$. \n" ); document.write( "We want to rotate $P$ counterclockwise by $60^\circ$ around $Q$ to obtain point $R$. \n" ); document.write( "We want to find the distance $PR$.\r \n" ); document.write( "\n" ); document.write( "First, let's find the vector $\vec{QP} = P - Q = (4-12, 0-(-7)) = (-8, 7)$. \n" ); document.write( "Let's rotate this vector counterclockwise by $60^\circ$.\r \n" ); document.write( "\n" ); document.write( "We can represent the vector $\vec{QP}$ as a complex number: $z = -8 + 7i$. \n" ); document.write( "To rotate $z$ counterclockwise by $60^\circ$, we multiply it by $e^{i\pi/3} = \cos(60^\circ) + i\sin(60^\circ) = \frac{1}{2} + i\frac{\sqrt{3}}{2}$. \n" ); document.write( "The rotated vector is: \n" ); document.write( "$$z' = z \cdot e^{i\pi/3} = (-8 + 7i)\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = -4 - 4i\sqrt{3} + \frac{7i}{2} - \frac{7\sqrt{3}}{2} = \left(-4 - \frac{7\sqrt{3}}{2}\right) + i\left(\frac{7}{2} - 4\sqrt{3}\right)$$ \n" ); document.write( "This corresponds to the vector $\vec{QR} = \left(-4 - \frac{7\sqrt{3}}{2}, \frac{7}{2} - 4\sqrt{3}\right)$. \n" ); document.write( "So, $R = Q + \vec{QR} = \left(12 - 4 - \frac{7\sqrt{3}}{2}, -7 + \frac{7}{2} - 4\sqrt{3}\right) = \left(8 - \frac{7\sqrt{3}}{2}, -\frac{7}{2} - 4\sqrt{3}\right)$.\r \n" ); document.write( "\n" ); document.write( "We want to find $PR$. \n" ); document.write( "Let's first find $PQ = \sqrt{(12-4)^2 + (-7-0)^2} = \sqrt{8^2 + 7^2} = \sqrt{64+49} = \sqrt{113}$. \n" ); document.write( "Since rotation preserves distances, $QR = PQ = \sqrt{113}$. \n" ); document.write( "We want $PR$, not $QR$.\r \n" ); document.write( "\n" ); document.write( "Since we are rotating $P$ around $Q$, the distance $QP$ is the same as $QR$. \n" ); document.write( "We want to find the distance between $P$ and $R$. \n" ); document.write( "We know $QP = QR = \sqrt{113}$. \n" ); document.write( "Let $PR = d$. \n" ); document.write( "We have a triangle $PQR$ with $QP = QR = \sqrt{113}$ and $\angle PQR = 60^\circ$. \n" ); document.write( "Since $QP = QR$, $\triangle PQR$ is an isosceles triangle. \n" ); document.write( "Since $\angle PQR = 60^\circ$, the other two angles are equal, and their sum is $180^\circ - 60^\circ = 120^\circ$. \n" ); document.write( "Thus, $\angle QPR = \angle QRP = 60^\circ$. \n" ); document.write( "Therefore, $\triangle PQR$ is an equilateral triangle, so $PR = QP = QR = \sqrt{113}$.\r \n" ); document.write( "\n" ); document.write( "Final Answer: The final answer is $\boxed{\sqrt{113}}$ \n" ); document.write( " \n" ); document.write( " |