document.write( "Question 1169744: The general linear supply and demand for one-commodity market model are given by
\n" ); document.write( "P = a๐‘„๐‘ +b (a>0, b>0)
\n" ); document.write( "P = - c๐‘„๐ท+d (c>0, d>0)
\n" ); document.write( "a. Show that in matrix notation the equilibrium price, P, and quantity, Q satisfy.
\n" ); document.write( " [1 โˆ’๐‘Ž] [๐‘ƒ]=[๐‘]
\n" ); document.write( "1 ๐‘ ๐‘„ ๐‘‘
\n" ); document.write( "b. Solve this system to express P and Q in terms of a, b, c and d.
\n" ); document.write( "c. Write down the multiplier for Q due to changes in b and deduce that an increase in b lends to an decrease in Q.
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #851306 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Absolutely, let's solve this supply and demand problem.\r
\n" ); document.write( "\n" ); document.write( "**Understanding the Model**\r
\n" ); document.write( "\n" ); document.write( "We have a one-commodity market with linear supply and demand equations:\r
\n" ); document.write( "\n" ); document.write( "* Supply: P = aQs + b (a > 0, b > 0)
\n" ); document.write( "* Demand: P = -cQd + d (c > 0, d > 0)\r
\n" ); document.write( "\n" ); document.write( "Where:\r
\n" ); document.write( "\n" ); document.write( "* P = Price
\n" ); document.write( "* Qs = Quantity supplied
\n" ); document.write( "* Qd = Quantity demanded\r
\n" ); document.write( "\n" ); document.write( "At equilibrium, Qs = Qd = Q.\r
\n" ); document.write( "\n" ); document.write( "**a) Show the Matrix Notation**\r
\n" ); document.write( "\n" ); document.write( "1. **Rewrite the Equations:**\r
\n" ); document.write( "\n" ); document.write( " * Supply: P - aQ = b
\n" ); document.write( " * Demand: P + cQ = d\r
\n" ); document.write( "\n" ); document.write( "2. **Matrix Form:**\r
\n" ); document.write( "\n" ); document.write( " We can represent these equations in matrix form:\r
\n" ); document.write( "\n" ); document.write( " ```
\n" ); document.write( " [ 1 -a ] [ P ] = [ b ]
\n" ); document.write( " [ 1 c ] [ Q ] = [ d ]
\n" ); document.write( " ```\r
\n" ); document.write( "\n" ); document.write( " Thus, we have shown the required matrix equation.\r
\n" ); document.write( "\n" ); document.write( "**b) Solve for P and Q**\r
\n" ); document.write( "\n" ); document.write( "1. **Matrix Equation:**\r
\n" ); document.write( "\n" ); document.write( " Let:\r
\n" ); document.write( "\n" ); document.write( " ```
\n" ); document.write( " A = [ 1 -a ]
\n" ); document.write( " [ 1 c ]\r
\n" ); document.write( "\n" ); document.write( " X = [ P ]
\n" ); document.write( " [ Q ]\r
\n" ); document.write( "\n" ); document.write( " B = [ b ]
\n" ); document.write( " [ d ]
\n" ); document.write( " ```\r
\n" ); document.write( "\n" ); document.write( " We have AX = B, so X = AโปยนB.\r
\n" ); document.write( "\n" ); document.write( "2. **Inverse of A:**\r
\n" ); document.write( "\n" ); document.write( " * det(A) = (1 * c) - (-a * 1) = c + a
\n" ); document.write( " * Aโปยน = (1 / (c + a)) * [ c a ]
\n" ); document.write( " [ -1 1 ]\r
\n" ); document.write( "\n" ); document.write( "3. **Solve for X (P and Q):**\r
\n" ); document.write( "\n" ); document.write( " ```
\n" ); document.write( " [ P ] = (1 / (c + a)) * [ c a ] [ b ]
\n" ); document.write( " [ Q ] [ -1 1 ] [ d ]
\n" ); document.write( " ```\r
\n" ); document.write( "\n" ); document.write( " ```
\n" ); document.write( " P = (1 / (c + a)) * (cb + ad) = (cb + ad) / (c + a)
\n" ); document.write( " Q = (1 / (c + a)) * (-b + d) = (d - b) / (c + a)
\n" ); document.write( " ```\r
\n" ); document.write( "\n" ); document.write( " Therefore:\r
\n" ); document.write( "\n" ); document.write( " * P = (cb + ad) / (c + a)
\n" ); document.write( " * Q = (d - b) / (c + a)\r
\n" ); document.write( "\n" ); document.write( "**c) Multiplier for Q due to Changes in b**\r
\n" ); document.write( "\n" ); document.write( "1. **Q in terms of b:**\r
\n" ); document.write( "\n" ); document.write( " * Q = (d - b) / (c + a)\r
\n" ); document.write( "\n" ); document.write( "2. **Multiplier:**\r
\n" ); document.write( "\n" ); document.write( " The multiplier for Q due to changes in b is the derivative of Q with respect to b:\r
\n" ); document.write( "\n" ); document.write( " * dQ/db = -1 / (c + a)\r
\n" ); document.write( "\n" ); document.write( "3. **Deduction:**\r
\n" ); document.write( "\n" ); document.write( " Since a > 0 and c > 0, (c + a) > 0. Therefore, -1 / (c + a) is always negative.\r
\n" ); document.write( "\n" ); document.write( " This means that an increase in b (the y-intercept of the supply curve) leads to a decrease in Q (the equilibrium quantity).\r
\n" ); document.write( "\n" ); document.write( "**Final Answers**\r
\n" ); document.write( "\n" ); document.write( "* **(a)** The matrix notation is: [ 1 -a ] [ P ] = [ b ]
\n" ); document.write( " [ 1 c ] [ Q ] = [ d ]
\n" ); document.write( "* **(b)** P = (cb + ad) / (c + a)
\n" ); document.write( " Q = (d - b) / (c + a)
\n" ); document.write( "* **(c)** The multiplier for Q due to changes in b is -1 / (c + a). Since this is negative, an increase in b leads to a decrease in Q.
\n" ); document.write( "
\n" ); document.write( "
\n" );