document.write( "Question 1169822: Please help me to solve this.. DEF is a triangle with angle EDF=2x°. Line DE and line DF are produced to G and H respectively so that side EF=side EG=side FH. Line EH and line FG intersect at K. Show that angle EKG=90-x°. Thank you \n" ); document.write( "
Algebra.Com's Answer #851287 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Absolutely! Let's break down this geometry problem step-by-step.\r \n" ); document.write( "\n" ); document.write( "**Understanding the Problem**\r \n" ); document.write( "\n" ); document.write( "We're given a triangle DEF with specific conditions regarding the extensions of its sides and the lengths of certain segments. We need to prove that the angle EKG is equal to 90 - x degrees.\r \n" ); document.write( "\n" ); document.write( "**Diagram**\r \n" ); document.write( "\n" ); document.write( "It's crucial to visualize this problem. Here's a description of the diagram:\r \n" ); document.write( "\n" ); document.write( "1. Start with triangle DEF. \n" ); document.write( "2. Extend DE to G and DF to H. \n" ); document.write( "3. EF = EG = FH. \n" ); document.write( "4. EH and FG intersect at K.\r \n" ); document.write( "\n" ); document.write( "**Solution**\r \n" ); document.write( "\n" ); document.write( "1. **Isosceles Triangles:** \n" ); document.write( " * Since EG = EF, triangle EFG is isosceles. Therefore, ∠EFG = ∠EGF. \n" ); document.write( " * Since FH = EF, triangle EFH is isosceles. Therefore, ∠FEH = ∠FHE.\r \n" ); document.write( "\n" ); document.write( "2. **Angle Sum of Triangle DEF:** \n" ); document.write( " * In triangle DEF, ∠DEF + ∠DFE + ∠EDF = 180°. \n" ); document.write( " * Let ∠DEF = a and ∠DFE = b. \n" ); document.write( " * Then, a + b + 2x = 180°. \n" ); document.write( " * Therefore, a + b = 180° - 2x.\r \n" ); document.write( "\n" ); document.write( "3. **Angles in Isosceles Triangles:** \n" ); document.write( " * In triangle EFG, let ∠EFG = ∠EGF = y. \n" ); document.write( " * In triangle EFH, let ∠FEH = ∠FHE = z. \n" ); document.write( " * The angles on a straight line add to 180 degrees. \n" ); document.write( " * ∠DEG = 180 - a, and ∠DFH = 180 -b. \n" ); document.write( " * In triangle EFG, 2y + 180-a = 180, so 2y = a, and y = a/2. \n" ); document.write( " * In triangle EFH, 2z + 180-b = 180, so 2z = b, and z = b/2.\r \n" ); document.write( "\n" ); document.write( "4. **Angles in Triangle EKF** \n" ); document.write( " * ∠EKF = 180 - (z + y) \n" ); document.write( " * ∠EKF = 180 - (b/2 + a/2) \n" ); document.write( " * ∠EKF = 180 - (a+b)/2\r \n" ); document.write( "\n" ); document.write( "5. **Substitution** \n" ); document.write( " * We know a + b = 180 - 2x \n" ); document.write( " * Substitute this into the equation for ∠EKF: \n" ); document.write( " * ∠EKF = 180 - (180 - 2x)/2 \n" ); document.write( " * ∠EKF = 180 - (90 - x) \n" ); document.write( " * ∠EKF = 180 - 90 + x \n" ); document.write( " * ∠EKF = 90 + x\r \n" ); document.write( "\n" ); document.write( "6. **Vertical Angles** \n" ); document.write( " * ∠EKG and ∠EKF are supplementary angles, so ∠EKG + ∠EKF = 180. \n" ); document.write( " * ∠EKG = 180 - ∠EKF \n" ); document.write( " * ∠EKG = 180 - (90 + x) \n" ); document.write( " * ∠EKG = 180 - 90 - x \n" ); document.write( " * ∠EKG = 90 - x.\r \n" ); document.write( "\n" ); document.write( "**Therefore, we have shown that angle EKG = 90 - x degrees.** \n" ); document.write( " \n" ); document.write( " |