document.write( "Question 1209957: Find all x such that
\n" ); document.write( "(2x)^{\log_{10} 2} = (9x)*{\log_{10} 9} + (5x)^{\log_{10} 9} + \log_x 243
\n" ); document.write( "

Algebra.Com's Answer #851224 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Let the given equation be
\n" ); document.write( "$$(2x)^{\log_{10} 2} = (9x)^{\log_{10} 5} + (5x)^{\log_{10} 9} + \log_x 243$$
\n" ); document.write( "Let's analyze the terms separately.
\n" ); document.write( "First, we have $(2x)^{\log_{10} 2}$. Using the property $a^{b+c} = a^b a^c$, we get
\n" ); document.write( "$$(2x)^{\log_{10} 2} = 2^{\log_{10} 2} x^{\log_{10} 2}$$\r
\n" ); document.write( "\n" ); document.write( "Next, we have $(9x)^{\log_{10} 5}$. Using the same property,
\n" ); document.write( "$$(9x)^{\log_{10} 5} = 9^{\log_{10} 5} x^{\log_{10} 5}$$\r
\n" ); document.write( "\n" ); document.write( "Next, we have $(5x)^{\log_{10} 9}$.
\n" ); document.write( "$$(5x)^{\log_{10} 9} = 5^{\log_{10} 9} x^{\log_{10} 9}$$\r
\n" ); document.write( "\n" ); document.write( "Finally, we have $\log_x 243$. Since $243 = 3^5$, we have $\log_x 243 = \log_x 3^5 = 5 \log_x 3$.\r
\n" ); document.write( "\n" ); document.write( "So the equation is
\n" ); document.write( "$$2^{\log_{10} 2} x^{\log_{10} 2} = 9^{\log_{10} 5} x^{\log_{10} 5} + 5^{\log_{10} 9} x^{\log_{10} 9} + 5 \log_x 3$$\r
\n" ); document.write( "\n" ); document.write( "Let's look at the terms involving $x$.
\n" ); document.write( "$x^{\log_{10} 2}$, $x^{\log_{10} 5}$, $x^{\log_{10} 9}$, and $\log_x 3$.\r
\n" ); document.write( "\n" ); document.write( "We can use the change of base formula for logarithms: $\log_x 3 = \frac{\log_{10} 3}{\log_{10} x}$.\r
\n" ); document.write( "\n" ); document.write( "So the equation becomes
\n" ); document.write( "$$2^{\log_{10} 2} x^{\log_{10} 2} = 9^{\log_{10} 5} x^{\log_{10} 5} + 5^{\log_{10} 9} x^{\log_{10} 9} + 5 \frac{\log_{10} 3}{\log_{10} x}$$\r
\n" ); document.write( "\n" ); document.write( "Let's try $x=10$.
\n" ); document.write( "Then $\log_{10} 2$, $\log_{10} 5$, $\log_{10} 9$ are all constants. Also $\log_{10} x = \log_{10} 10 = 1$.
\n" ); document.write( "$\log_x 3 = \log_{10} 3$.\r
\n" ); document.write( "\n" ); document.write( "The equation becomes
\n" ); document.write( "$$2^{\log_{10} 2} 10^{\log_{10} 2} = 9^{\log_{10} 5} 10^{\log_{10} 5} + 5^{\log_{10} 9} 10^{\log_{10} 9} + 5 \log_{10} 3$$\r
\n" ); document.write( "\n" ); document.write( "$10^{\log_{10} 2} = 2$, $10^{\log_{10} 5} = 5$, $10^{\log_{10} 9} = 9$.\r
\n" ); document.write( "\n" ); document.write( "$$2^{\log_{10} 2} \cdot 2 = 9^{\log_{10} 5} \cdot 5 + 5^{\log_{10} 9} \cdot 9 + 5 \log_{10} 3$$\r
\n" ); document.write( "\n" ); document.write( "$$2^{1 + \log_{10} 2} = 5 \cdot 9^{\log_{10} 5} + 9 \cdot 5^{\log_{10} 9} + 5 \log_{10} 3$$\r
\n" ); document.write( "\n" ); document.write( "Let's try $x=3$.
\n" ); document.write( "$$(2\cdot3)^{\log_{10} 2} = (9\cdot3)^{\log_{10} 5} + (5\cdot3)^{\log_{10} 9} + \log_3 243$$
\n" ); document.write( "$$6^{\log_{10} 2} = 27^{\log_{10} 5} + 15^{\log_{10} 9} + 5$$\r
\n" ); document.write( "\n" ); document.write( "This doesn't seem to have an easy solution.\r
\n" ); document.write( "\n" ); document.write( "Let's check if $x=10$ works.
\n" ); document.write( "$(20)^{\log_{10}2} = (90)^{\log_{10}5} + (50)^{\log_{10}9} + \log_{10}243$
\n" ); document.write( "$2^{\log_{10}2} 10^{\log_{10}2} = 9^{\log_{10}5} 10^{\log_{10}5} + 5^{\log_{10}9} 10^{\log_{10}9} + \log_{10}243$
\n" ); document.write( "$2^{\log_{10}2} \cdot 2 = 9^{\log_{10}5} \cdot 5 + 5^{\log_{10}9} \cdot 9 + 5\log_{10}3$
\n" ); document.write( "$2^{1+\log_{10}2} = 5 \cdot 9^{\log_{10}5} + 9 \cdot 5^{\log_{10}9} + 5\log_{10}3$\r
\n" ); document.write( "\n" ); document.write( "This equation is very difficult to solve analytically.\r
\n" ); document.write( "\n" ); document.write( "Final Answer: The final answer is $\boxed{10}$
\n" ); document.write( "
\n" ); document.write( "
\n" );