document.write( "Question 1209952: The function f(n) is defined for all integers n, such that\r
\n" );
document.write( "\n" );
document.write( "f(x) + f(y) = f(x + y) - 4xy - 1 + f(x^2) + f(y^2)
\n" );
document.write( "for all integers x and y, and f(1) = 1. Find f(n).
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #851203 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! We are given the functional equation:\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "f(x) + f(y) = f(x + y) - 4xy - 1 + f(x^2) + f(y^2) \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "for all integers \( x, y \), along with the initial condition \( f(1) = 1 \). Our goal is to determine \( f(n) \) explicitly.\r \n" ); document.write( "\n" ); document.write( "### Step 1: Plugging in \( x = 0, y = 0 \)\r \n" ); document.write( "\n" ); document.write( "Substituting \( x = 0, y = 0 \) into the given equation:\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "f(0) + f(0) = f(0) - 4(0)(0) - 1 + f(0^2) + f(0^2) \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "Since \( f(0^2) = f(0) \), we simplify:\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "2f(0) = f(0) - 1 + 2f(0) \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "Canceling \( 2f(0) \) from both sides, we get:\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "0 = -1 \Rightarrow f(0) = 0. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "### Step 2: Plugging in \( y = 1 \)\r \n" ); document.write( "\n" ); document.write( "Setting \( y = 1 \) in the functional equation:\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "f(x) + f(1) = f(x + 1) - 4x(1) - 1 + f(x^2) + f(1^2). \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "Since \( f(1) = 1 \) and \( f(1^2) = f(1) = 1 \), we substitute:\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "f(x) + 1 = f(x + 1) - 4x - 1 + f(x^2) + 1. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "Simplify:\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "f(x) = f(x + 1) - 4x + f(x^2). \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "### Step 3: Plugging in \( x = 1, y = 1 \)\r \n" ); document.write( "\n" ); document.write( "Setting \( x = y = 1 \):\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "f(1) + f(1) = f(2) - 4(1)(1) - 1 + f(1^2) + f(1^2). \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "Using \( f(1) = 1 \):\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "1 + 1 = f(2) - 4 - 1 + 1 + 1. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "2 = f(2) - 3. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "f(2) = 5. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "### Step 4: Plugging in \( x = 2, y = 1 \)\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "f(2) + f(1) = f(3) - 4(2)(1) - 1 + f(2^2) + f(1^2). \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "Using \( f(2) = 5 \), \( f(1) = 1 \), \( f(1^2) = 1 \):\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "5 + 1 = f(3) - 8 - 1 + f(4) + 1. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "6 = f(3) - 8 + f(4) + 1. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "5 = f(3) - 8 + f(4). \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "Rearrange:\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "f(3) + f(4) = 13. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "### Step 5: Identifying a Pattern\r \n" ); document.write( "\n" ); document.write( "Based on observed values \( f(1) = 1 \), \( f(2) = 5 \), and the recurrence relation, we suspect \( f(n) \) follows a quadratic pattern. Assume:\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "f(n) = an^2 + bn + c. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "Using \( f(1) = 1 \):\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "a(1)^2 + b(1) + c = 1 \Rightarrow a + b + c = 1. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "Using \( f(2) = 5 \):\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "a(2)^2 + b(2) + c = 5 \Rightarrow 4a + 2b + c = 5. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "Using \( f(0) = 0 \):\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "a(0)^2 + b(0) + c = 0 \Rightarrow c = 0. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "So,\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "a + b = 1, \quad 4a + 2b = 5. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "Solving for \( a, b \):\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "b = 1 - a, \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "4a + 2(1 - a) = 5. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "4a + 2 - 2a = 5. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "2a = 3. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "a = \frac{3}{2}, \quad b = 1 - \frac{3}{2} = -\frac{1}{2}. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "Thus, \r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "f(n) = \frac{3}{2} n^2 - \frac{1}{2} n. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "Verifying,\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "f(n) = \frac{3}{2} n(n - 1). \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "Final Answer:\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "\boxed{f(n) = \frac{3}{2} n(n-1).} \n" ); document.write( "\] \n" ); document.write( " |