document.write( "Question 1209950: The function f(n) takes the integers to the real numbers such that
\n" );
document.write( "f(m + n) + f(m - n) = 2f(m) + 2f(n) + mn
\n" );
document.write( "for all integers m and n, and f(1) = 2. Find f(n).
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #851199 by ikleyn(52786)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "The function f(n) takes the integers to the real numbers such that \n" ); document.write( "f(m + n) + f(m - n) = 2f(m) + 2f(n) + mn \n" ); document.write( "for all integers m and n, and f(1) = 2. Find f(n). \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The solution by @CPhill, producing the formula f(n) = \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "It is seen even by an disarmed eye, since the basic formula in the post\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " f(m + n) + f(m - n) = 2f(m) + 2f(n) + mn\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "must generate INTEGER values for positive integer m and n, which is clear by induction.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "On the contrary, the formula f(n) = \n" ); document.write( "fractional numbers for every second odd integer number.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This CONTRADICTION kills/disproves the solution and the answer by @CPhill to the death.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |