document.write( "Question 1170424: 𝐏𝐫𝐨𝐛𝐥𝐞𝐦 𝟏
\n" ); document.write( "
\n" ); document.write( "(a) Teddy J is a manufacturer of dish washing liquid . If his monthly demand function for 750ml size is q = 4000 − 250p and his total cost function is C(q) = 500 + 0.2q.
\n" ); document.write( "(i) Derive an expression, R(q) for Teddy J′s total revenue curve.
\n" ); document.write( "(ii) Derive an expression, Π(q) for Teddy J′s profit function.
\n" ); document.write( "(iii) Determine whether Teddy J′s profit is increasing or decreasing when he produces 5 hundred, 750ml bottles of dish washing liquid.
\n" ); document.write( "(iv) How many 750ml bottles of dish washing liquid should Teddy J produce per month if he wishes to maximize his profits.
\n" ); document.write( "(b) A firm has an average cost function
\n" ); document.write( " 125 q2
\n" ); document.write( "A(q) = + − 4. q 16
\n" ); document.write( "where q is the firm′s output.
\n" ); document.write( "(i) Determine the level of output for average costs are minimum.
\n" ); document.write( "(ii) Hence determine the range of values for which average costs are decreasing.
\n" ); document.write( "(iii) What part of the decreasing range is practically feasible?
\n" ); document.write( "(iv) Write an equation for the total cost function.
\n" ); document.write( "(v) Hence calculate the level of output for which total costs are minimum.
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #851189 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Let's break down each part of the problem.\r
\n" ); document.write( "\n" ); document.write( "**(a) Teddy J's Dish Washing Liquid**\r
\n" ); document.write( "\n" ); document.write( "Given:
\n" ); document.write( "* Demand function: $q = 4000 - 250p$
\n" ); document.write( "* Total cost function: $C(q) = 500 + 0.2q$\r
\n" ); document.write( "\n" ); document.write( "**(i) Total Revenue (R(q))**\r
\n" ); document.write( "\n" ); document.write( "* First, solve the demand function for $p$:
\n" ); document.write( " * $250p = 4000 - q$
\n" ); document.write( " * $p = \frac{4000 - q}{250} = 16 - \frac{q}{250}$
\n" ); document.write( "* Total revenue is given by $R(q) = pq$:
\n" ); document.write( " * $R(q) = \left(16 - \frac{q}{250}\right)q$
\n" ); document.write( " * $R(q) = 16q - \frac{q^2}{250}$\r
\n" ); document.write( "\n" ); document.write( "**(ii) Profit Function (Π(q))**\r
\n" ); document.write( "\n" ); document.write( "* Profit is total revenue minus total cost:
\n" ); document.write( " * $\Pi(q) = R(q) - C(q)$
\n" ); document.write( " * $\Pi(q) = \left(16q - \frac{q^2}{250}\right) - (500 + 0.2q)$
\n" ); document.write( " * $\Pi(q) = 16q - \frac{q^2}{250} - 500 - 0.2q$
\n" ); document.write( " * $\Pi(q) = -\frac{q^2}{250} + 15.8q - 500$\r
\n" ); document.write( "\n" ); document.write( "**(iii) Profit at q = 500**\r
\n" ); document.write( "\n" ); document.write( "* To determine if profit is increasing or decreasing, we need to find the derivative of the profit function and evaluate it at $q = 500$:
\n" ); document.write( " * $\Pi'(q) = -\frac{2q}{250} + 15.8 = -\frac{q}{125} + 15.8$
\n" ); document.write( " * $\Pi'(500) = -\frac{500}{125} + 15.8 = -4 + 15.8 = 11.8$
\n" ); document.write( "* Since $\Pi'(500) > 0$, the profit is increasing when Teddy J produces 500 bottles.\r
\n" ); document.write( "\n" ); document.write( "**(iv) Profit Maximization**\r
\n" ); document.write( "\n" ); document.write( "* To maximize profit, we set the derivative of the profit function to zero:
\n" ); document.write( " * $\Pi'(q) = -\frac{q}{125} + 15.8 = 0$
\n" ); document.write( " * $\frac{q}{125} = 15.8$
\n" ); document.write( " * $q = 15.8 \cdot 125 = 1975$
\n" ); document.write( "* Teddy J should produce 1975 bottles to maximize profits.\r
\n" ); document.write( "\n" ); document.write( "**(b) Firm's Average Cost Function**\r
\n" ); document.write( "\n" ); document.write( "Given:
\n" ); document.write( "* Average cost function: $A(q) = \frac{125}{q} + \frac{q}{16} - 4$\r
\n" ); document.write( "\n" ); document.write( "**(i) Output for Minimum Average Costs**\r
\n" ); document.write( "\n" ); document.write( "* To find the minimum average cost, we take the derivative of $A(q)$ and set it to zero:
\n" ); document.write( " * $A'(q) = -\frac{125}{q^2} + \frac{1}{16} = 0$
\n" ); document.write( " * $\frac{125}{q^2} = \frac{1}{16}$
\n" ); document.write( " * $q^2 = 125 \cdot 16 = 2000$
\n" ); document.write( " * $q = \sqrt{2000} = 20\sqrt{5} \approx 44.72$
\n" ); document.write( "* The level of output for minimum average costs is approximately 44.72.\r
\n" ); document.write( "\n" ); document.write( "**(ii) Range for Decreasing Average Costs**\r
\n" ); document.write( "\n" ); document.write( "* Average costs are decreasing when $A'(q) < 0$:
\n" ); document.write( " * $-\frac{125}{q^2} + \frac{1}{16} < 0$
\n" ); document.write( " * $\frac{1}{16} < \frac{125}{q^2}$
\n" ); document.write( " * $q^2 < 125 \cdot 16 = 2000$
\n" ); document.write( " * $q < \sqrt{2000} = 20\sqrt{5} \approx 44.72$
\n" ); document.write( "* Average costs are decreasing when $0 < q < 20\sqrt{5}$.\r
\n" ); document.write( "\n" ); document.write( "**(iii) Practically Feasible Decreasing Range**\r
\n" ); document.write( "\n" ); document.write( "* Output must be a positive value.
\n" ); document.write( "* The practically feasible range for decreasing average costs is $0 < q < 20\sqrt{5}$.\r
\n" ); document.write( "\n" ); document.write( "**(iv) Total Cost Function (C(q))**\r
\n" ); document.write( "\n" ); document.write( "* Total cost is average cost multiplied by output:
\n" ); document.write( " * $C(q) = q \cdot A(q)$
\n" ); document.write( " * $C(q) = q \left(\frac{125}{q} + \frac{q}{16} - 4\right)$
\n" ); document.write( " * $C(q) = 125 + \frac{q^2}{16} - 4q$\r
\n" ); document.write( "\n" ); document.write( "**(v) Output for Minimum Total Costs**\r
\n" ); document.write( "\n" ); document.write( "* To find the minimum total cost, we take the derivative of $C(q)$ and set it to zero:
\n" ); document.write( " * $C'(q) = \frac{2q}{16} - 4 = \frac{q}{8} - 4 = 0$
\n" ); document.write( " * $\frac{q}{8} = 4$
\n" ); document.write( " * $q = 32$
\n" ); document.write( "* The level of output for minimum total costs is 32.
\n" ); document.write( "
\n" ); document.write( "
\n" );