document.write( "Question 1170515: f and g are one to one functions and satisfy
\n" );
document.write( "f(3)=7,f(11)=16,f(7)=11,f(16)=3,g(7)=16,g(11)=7,g(3)=11,g(16)=3\r
\n" );
document.write( "\n" );
document.write( "Find
\n" );
document.write( "((f∘g)(16))−1−((g∘f)(16))−1\r
\n" );
document.write( "\n" );
document.write( "Answer:
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #851160 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Let's break down this problem step by step:\r \n" ); document.write( "\n" ); document.write( "**1. Understand Composition of Functions**\r \n" ); document.write( "\n" ); document.write( "* (f∘g)(x) = f(g(x)) \n" ); document.write( "* (g∘f)(x) = g(f(x))\r \n" ); document.write( "\n" ); document.write( "**2. Calculate (f∘g)(16)**\r \n" ); document.write( "\n" ); document.write( "* (f∘g)(16) = f(g(16)) \n" ); document.write( "* We're given g(16) = 3 \n" ); document.write( "* So (f∘g)(16) = f(3) \n" ); document.write( "* We're given f(3) = 7 \n" ); document.write( "* Therefore, (f∘g)(16) = 7\r \n" ); document.write( "\n" ); document.write( "**3. Calculate (g∘f)(16)**\r \n" ); document.write( "\n" ); document.write( "* (g∘f)(16) = g(f(16)) \n" ); document.write( "* We're given f(16) = 3 \n" ); document.write( "* So (g∘f)(16) = g(3) \n" ); document.write( "* We're given g(3) = 11 \n" ); document.write( "* Therefore, (g∘f)(16) = 11\r \n" ); document.write( "\n" ); document.write( "**4. Find ((f∘g)(16))−1**\r \n" ); document.write( "\n" ); document.write( "* ((f∘g)(16))−1 = 7−1 \n" ); document.write( "* We want to find the inverse of 7.\r \n" ); document.write( "\n" ); document.write( "* To find f^-1(7), we look for a value x such that f(x)=7. f(3)=7. therefore f^-1(7) = 3. \n" ); document.write( "* To find g^-1(11), we look for a value x such that g(x)=11. g(3)=11. therefore g^-1(11)=3.\r \n" ); document.write( "\n" ); document.write( "* ((f∘g)(16))−1 = f^-1(7) = 3\r \n" ); document.write( "\n" ); document.write( "**5. Find ((g∘f)(16))−1**\r \n" ); document.write( "\n" ); document.write( "* ((g∘f)(16))−1 = 11−1 \n" ); document.write( "* To find f^-1(11), we look for a value x such that f(x)=11. f(7)=11. therefore f^-1(11) = 7. \n" ); document.write( "* To find g^-1(11), we look for a value x such that g(x)=11. g(3)=11. therefore g^-1(11)=3. \n" ); document.write( "* ((g∘f)(16))−1 = g^-1(11) = 3.\r \n" ); document.write( "\n" ); document.write( "**6. Calculate the Final Result**\r \n" ); document.write( "\n" ); document.write( "* ((f∘g)(16))−1 − ((g∘f)(16))−1 = 3 - 3 = 0\r \n" ); document.write( "\n" ); document.write( "**Final Answer:** The final answer is 0. \n" ); document.write( " \n" ); document.write( " |