document.write( "Question 1170702: Let M=[{0,-2},{4,6}]. Find formulas for the entries of Mn, where n is a positive integer. \n" ); document.write( "
Algebra.Com's Answer #851108 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Let's find the formula for the entries of $M^n$, where $M = \begin{bmatrix} 0 & -2 \\ 4 & 6 \end{bmatrix}$.\r
\n" ); document.write( "\n" ); document.write( "**1. Find the Eigenvalues and Eigenvectors of M**\r
\n" ); document.write( "\n" ); document.write( "* **Characteristic Equation:**
\n" ); document.write( " det(M - λI) = 0
\n" ); document.write( " det( $\begin{bmatrix} -\lambda & -2 \\ 4 & 6-\lambda \end{bmatrix}$ ) = 0
\n" ); document.write( " (-λ)(6 - λ) - (-2)(4) = 0
\n" ); document.write( " -6λ + λ² + 8 = 0
\n" ); document.write( " λ² - 6λ + 8 = 0
\n" ); document.write( " (λ - 4)(λ - 2) = 0\r
\n" ); document.write( "\n" ); document.write( "* **Eigenvalues:**
\n" ); document.write( " λ₁ = 4 and λ₂ = 2\r
\n" ); document.write( "\n" ); document.write( "* **Eigenvectors:**
\n" ); document.write( " * For λ₁ = 4:
\n" ); document.write( " (M - 4I)v₁ = 0
\n" ); document.write( " $\begin{bmatrix} -4 & -2 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
\n" ); document.write( " -4x - 2y = 0
\n" ); document.write( " -2x - y = 0
\n" ); document.write( " y = -2x
\n" ); document.write( " Let x = 1, then y = -2.
\n" ); document.write( " v₁ = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$\r
\n" ); document.write( "\n" ); document.write( " * For λ₂ = 2:
\n" ); document.write( " (M - 2I)v₂ = 0
\n" ); document.write( " $\begin{bmatrix} -2 & -2 \\ 4 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
\n" ); document.write( " -2x - 2y = 0
\n" ); document.write( " x + y = 0
\n" ); document.write( " y = -x
\n" ); document.write( " Let x = 1, then y = -1.
\n" ); document.write( " v₂ = $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$\r
\n" ); document.write( "\n" ); document.write( "**2. Form the Matrix P and Diagonal Matrix D**\r
\n" ); document.write( "\n" ); document.write( "* P = $\begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix}$ (matrix of eigenvectors)
\n" ); document.write( "* D = $\begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$ (diagonal matrix of eigenvalues)\r
\n" ); document.write( "\n" ); document.write( "**3. Find P⁻¹**\r
\n" ); document.write( "\n" ); document.write( "* det(P) = (1)(-1) - (1)(-2) = -1 + 2 = 1
\n" ); document.write( "* P⁻¹ = (1/det(P)) $\begin{bmatrix} -1 & -1 \\ 2 & 1 \end{bmatrix}$ = $\begin{bmatrix} -1 & -1 \\ 2 & 1 \end{bmatrix}$\r
\n" ); document.write( "\n" ); document.write( "**4. Use the Formula Mⁿ = PDⁿP⁻¹**\r
\n" ); document.write( "\n" ); document.write( "* Dⁿ = $\begin{bmatrix} 4ⁿ & 0 \\ 0 & 2ⁿ \end{bmatrix}$\r
\n" ); document.write( "\n" ); document.write( "* Mⁿ = $\begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} 4ⁿ & 0 \\ 0 & 2ⁿ \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 2 & 1 \end{bmatrix}$\r
\n" ); document.write( "\n" ); document.write( "* Mⁿ = $\begin{bmatrix} 4ⁿ & 2ⁿ \\ -2(4ⁿ) & -2ⁿ \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 2 & 1 \end{bmatrix}$\r
\n" ); document.write( "\n" ); document.write( "* Mⁿ = $\begin{bmatrix} -4ⁿ + 2(2ⁿ) & -4ⁿ + 2ⁿ \\ 2(4ⁿ) - 2(2ⁿ) & 2(4ⁿ) - 2ⁿ \end{bmatrix}$\r
\n" ); document.write( "\n" ); document.write( "* Mⁿ = $\begin{bmatrix} -4ⁿ + 2^(n+1) & -4ⁿ + 2ⁿ \\ 2(4ⁿ) - 2^(n+1) & 2(4ⁿ) - 2ⁿ \end{bmatrix}$\r
\n" ); document.write( "\n" ); document.write( "**Formulas for the Entries:**\r
\n" ); document.write( "\n" ); document.write( "* Mⁿ₁₁ = -4ⁿ + 2^(n+1)
\n" ); document.write( "* Mⁿ₁₂ = -4ⁿ + 2ⁿ
\n" ); document.write( "* Mⁿ₂₁ = 2(4ⁿ) - 2^(n+1)
\n" ); document.write( "* Mⁿ₂₂ = 2(4ⁿ) - 2ⁿ
\n" ); document.write( "
\n" ); document.write( "
\n" );