document.write( "Question 1170768: A regular pentagonal pyramid has an altitude of 20 cm and a slant height which measures 25cm. Find the base and the lateral areas of the pyramid. \n" ); document.write( "
Algebra.Com's Answer #851102 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Let's break down this problem step by step to find the base and lateral areas of the pentagonal pyramid.\r \n" ); document.write( "\n" ); document.write( "**1. Understand the Geometry**\r \n" ); document.write( "\n" ); document.write( "* **Regular Pentagonal Pyramid:** \n" ); document.write( " * Base is a regular pentagon (all sides and angles equal). \n" ); document.write( " * Altitude (height) is the perpendicular distance from the apex to the center of the base. \n" ); document.write( " * Slant height is the altitude of a lateral face (a triangle).\r \n" ); document.write( "\n" ); document.write( "**2. Visualize the Right Triangle**\r \n" ); document.write( "\n" ); document.write( "Imagine a right triangle formed by:\r \n" ); document.write( "\n" ); document.write( "* The altitude (20 cm) \n" ); document.write( "* The slant height (25 cm) \n" ); document.write( "* The apothem (a) of the pentagon (distance from the center of the pentagon to the midpoint of a side).\r \n" ); document.write( "\n" ); document.write( "Using the Pythagorean theorem:\r \n" ); document.write( "\n" ); document.write( "* a² + altitude² = slant height² \n" ); document.write( "* a² + 20² = 25² \n" ); document.write( "* a² + 400 = 625 \n" ); document.write( "* a² = 225 \n" ); document.write( "* a = √225 = 15 cm\r \n" ); document.write( "\n" ); document.write( "**3. Find the Side Length of the Pentagon (s)**\r \n" ); document.write( "\n" ); document.write( "* Let's consider a right triangle formed by: \n" ); document.write( " * The apothem (a = 15 cm) \n" ); document.write( " * Half of a side (s/2) \n" ); document.write( " * The radius (r) of the pentagon.\r \n" ); document.write( "\n" ); document.write( "* The central angle of a regular pentagon is 360° / 5 = 72°. \n" ); document.write( "* The angle formed by the apothem and the radius is half of the central angle, which is 36°.\r \n" ); document.write( "\n" ); document.write( "* Using trigonometry (tangent): \n" ); document.write( " * tan(36°) = (s/2) / a \n" ); document.write( " * s/2 = a * tan(36°) \n" ); document.write( " * s/2 = 15 * tan(36°) \n" ); document.write( " * s/2 ≈ 15 * 0.7265 \n" ); document.write( " * s/2 ≈ 10.8975 \n" ); document.write( " * s ≈ 21.795 cm\r \n" ); document.write( "\n" ); document.write( "**4. Find the Base Area (B)**\r \n" ); document.write( "\n" ); document.write( "* Area of a regular pentagon: \n" ); document.write( " * B = (1/2) * apothem * perimeter \n" ); document.write( " * Perimeter (P) = 5 * side length \n" ); document.write( " * P = 5 * 21.795 ≈ 108.975 cm \n" ); document.write( " * B = (1/2) * 15 cm * 108.975 cm \n" ); document.write( " * B ≈ 817.3125 cm²\r \n" ); document.write( "\n" ); document.write( "**5. Find the Lateral Area (LA)**\r \n" ); document.write( "\n" ); document.write( "* Lateral Area = (1/2) * perimeter * slant height \n" ); document.write( "* LA = (1/2) * 108.975 cm * 25 cm \n" ); document.write( "* LA ≈ 1362.1875 cm²\r \n" ); document.write( "\n" ); document.write( "**Rounded Values:**\r \n" ); document.write( "\n" ); document.write( "* Base Area (B) ≈ 817.31 cm² \n" ); document.write( "* Lateral Area (LA) ≈ 1362.19 cm²\r \n" ); document.write( "\n" ); document.write( "**Final Answers:**\r \n" ); document.write( "\n" ); document.write( "* **Base Area:** Approximately 817.31 cm² \n" ); document.write( "* **Lateral Area:** Approximately 1362.19 cm² \n" ); document.write( " \n" ); document.write( " |