document.write( "Question 1170768: A regular pentagonal pyramid has an altitude of 20 cm and a slant height which measures 25cm. Find the base and the lateral areas of the pyramid. \n" ); document.write( "
Algebra.Com's Answer #851102 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Let's break down this problem step by step to find the base and lateral areas of the pentagonal pyramid.\r
\n" ); document.write( "\n" ); document.write( "**1. Understand the Geometry**\r
\n" ); document.write( "\n" ); document.write( "* **Regular Pentagonal Pyramid:**
\n" ); document.write( " * Base is a regular pentagon (all sides and angles equal).
\n" ); document.write( " * Altitude (height) is the perpendicular distance from the apex to the center of the base.
\n" ); document.write( " * Slant height is the altitude of a lateral face (a triangle).\r
\n" ); document.write( "\n" ); document.write( "**2. Visualize the Right Triangle**\r
\n" ); document.write( "\n" ); document.write( "Imagine a right triangle formed by:\r
\n" ); document.write( "\n" ); document.write( "* The altitude (20 cm)
\n" ); document.write( "* The slant height (25 cm)
\n" ); document.write( "* The apothem (a) of the pentagon (distance from the center of the pentagon to the midpoint of a side).\r
\n" ); document.write( "\n" ); document.write( "Using the Pythagorean theorem:\r
\n" ); document.write( "\n" ); document.write( "* a² + altitude² = slant height²
\n" ); document.write( "* a² + 20² = 25²
\n" ); document.write( "* a² + 400 = 625
\n" ); document.write( "* a² = 225
\n" ); document.write( "* a = √225 = 15 cm\r
\n" ); document.write( "\n" ); document.write( "**3. Find the Side Length of the Pentagon (s)**\r
\n" ); document.write( "\n" ); document.write( "* Let's consider a right triangle formed by:
\n" ); document.write( " * The apothem (a = 15 cm)
\n" ); document.write( " * Half of a side (s/2)
\n" ); document.write( " * The radius (r) of the pentagon.\r
\n" ); document.write( "\n" ); document.write( "* The central angle of a regular pentagon is 360° / 5 = 72°.
\n" ); document.write( "* The angle formed by the apothem and the radius is half of the central angle, which is 36°.\r
\n" ); document.write( "\n" ); document.write( "* Using trigonometry (tangent):
\n" ); document.write( " * tan(36°) = (s/2) / a
\n" ); document.write( " * s/2 = a * tan(36°)
\n" ); document.write( " * s/2 = 15 * tan(36°)
\n" ); document.write( " * s/2 ≈ 15 * 0.7265
\n" ); document.write( " * s/2 ≈ 10.8975
\n" ); document.write( " * s ≈ 21.795 cm\r
\n" ); document.write( "\n" ); document.write( "**4. Find the Base Area (B)**\r
\n" ); document.write( "\n" ); document.write( "* Area of a regular pentagon:
\n" ); document.write( " * B = (1/2) * apothem * perimeter
\n" ); document.write( " * Perimeter (P) = 5 * side length
\n" ); document.write( " * P = 5 * 21.795 ≈ 108.975 cm
\n" ); document.write( " * B = (1/2) * 15 cm * 108.975 cm
\n" ); document.write( " * B ≈ 817.3125 cm²\r
\n" ); document.write( "\n" ); document.write( "**5. Find the Lateral Area (LA)**\r
\n" ); document.write( "\n" ); document.write( "* Lateral Area = (1/2) * perimeter * slant height
\n" ); document.write( "* LA = (1/2) * 108.975 cm * 25 cm
\n" ); document.write( "* LA ≈ 1362.1875 cm²\r
\n" ); document.write( "\n" ); document.write( "**Rounded Values:**\r
\n" ); document.write( "\n" ); document.write( "* Base Area (B) ≈ 817.31 cm²
\n" ); document.write( "* Lateral Area (LA) ≈ 1362.19 cm²\r
\n" ); document.write( "\n" ); document.write( "**Final Answers:**\r
\n" ); document.write( "\n" ); document.write( "* **Base Area:** Approximately 817.31 cm²
\n" ); document.write( "* **Lateral Area:** Approximately 1362.19 cm²
\n" ); document.write( "
\n" ); document.write( "
\n" );