document.write( "Question 1170844: I have a parabola with a length of 72 feet and a height of 64 ft, the goal is to find the vertex as well as the x-intercepts and then write the parabola in standard, vertex and factored form; thanks a ton! \n" ); document.write( "
Algebra.Com's Answer #851091 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Let's break down this problem step by step.\r
\n" ); document.write( "\n" ); document.write( "**1. Set up a Coordinate System**\r
\n" ); document.write( "\n" ); document.write( "To make the calculations easier, let's place the parabola in a coordinate system. We'll place the vertex on the y-axis, which will simplify the equations.\r
\n" ); document.write( "\n" ); document.write( "* Let the vertex be at (0, 64).
\n" ); document.write( "* The parabola opens downwards since it has a maximum height of 64 ft.
\n" ); document.write( "* The length of 72 feet means the x-intercepts are at (-36, 0) and (36, 0).\r
\n" ); document.write( "\n" ); document.write( "**2. Vertex Form**\r
\n" ); document.write( "\n" ); document.write( "The vertex form of a parabola is:\r
\n" ); document.write( "\n" ); document.write( "y = a(x - h)² + k\r
\n" ); document.write( "\n" ); document.write( "where (h, k) is the vertex.\r
\n" ); document.write( "\n" ); document.write( "* We know the vertex is (0, 64), so h = 0 and k = 64.
\n" ); document.write( "* y = a(x - 0)² + 64
\n" ); document.write( "* y = ax² + 64\r
\n" ); document.write( "\n" ); document.write( "**3. Find the Value of 'a'**\r
\n" ); document.write( "\n" ); document.write( "We can use one of the x-intercepts to find 'a'. Let's use (36, 0):\r
\n" ); document.write( "\n" ); document.write( "* 0 = a(36)² + 64
\n" ); document.write( "* 0 = 1296a + 64
\n" ); document.write( "* -64 = 1296a
\n" ); document.write( "* a = -64 / 1296
\n" ); document.write( "* a = -1 / 20.25
\n" ); document.write( "* a = -4 / 81\r
\n" ); document.write( "\n" ); document.write( "Therefore, the vertex form is:\r
\n" ); document.write( "\n" ); document.write( "y = (-4/81)x² + 64\r
\n" ); document.write( "\n" ); document.write( "**4. Standard Form**\r
\n" ); document.write( "\n" ); document.write( "The standard form of a parabola is:\r
\n" ); document.write( "\n" ); document.write( "y = ax² + bx + c\r
\n" ); document.write( "\n" ); document.write( "We already have the vertex form:\r
\n" ); document.write( "\n" ); document.write( "y = (-4/81)x² + 64\r
\n" ); document.write( "\n" ); document.write( "Since there's no 'x' term, b = 0. So the standard form is:\r
\n" ); document.write( "\n" ); document.write( "y = (-4/81)x² + 64\r
\n" ); document.write( "\n" ); document.write( "**5. Factored Form**\r
\n" ); document.write( "\n" ); document.write( "The factored form of a parabola is:\r
\n" ); document.write( "\n" ); document.write( "y = a(x - r₁)(x - r₂)\r
\n" ); document.write( "\n" ); document.write( "where r₁ and r₂ are the x-intercepts.\r
\n" ); document.write( "\n" ); document.write( "* We know the x-intercepts are (-36, 0) and (36, 0), so r₁ = -36 and r₂ = 36.
\n" ); document.write( "* We know a = -4/81.\r
\n" ); document.write( "\n" ); document.write( "Therefore, the factored form is:\r
\n" ); document.write( "\n" ); document.write( "y = (-4/81)(x - (-36))(x - 36)
\n" ); document.write( "y = (-4/81)(x + 36)(x - 36)\r
\n" ); document.write( "\n" ); document.write( "**Summary**\r
\n" ); document.write( "\n" ); document.write( "* **Vertex:** (0, 64)
\n" ); document.write( "* **X-intercepts:** (-36, 0) and (36, 0)
\n" ); document.write( "* **Vertex Form:** y = (-4/81)x² + 64
\n" ); document.write( "* **Standard Form:** y = (-4/81)x² + 64
\n" ); document.write( "* **Factored Form:** y = (-4/81)(x + 36)(x - 36)
\n" ); document.write( "
\n" ); document.write( "
\n" );