document.write( "Question 1209918: Let x_1, x_2, \dots, x_n be real numbers. If
\n" ); document.write( "x_1 + 2x_2 + \dots + nx_n = 1,
\n" ); document.write( "then find the minimum value of x_1^2/1 + x_2^2/2 + \dots + x_n^2/n, in terms of n.
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #851058 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Let $a_k = kx_k$ and $b_k = 1/k$.
\n" ); document.write( "Then the given condition is
\n" ); document.write( "$$\sum_{k=1}^n a_k = \sum_{k=1}^n kx_k = 1$$
\n" ); document.write( "We want to find the minimum value of
\n" ); document.write( "$$S = \sum_{k=1}^n \frac{x_k^2}{k} = \sum_{k=1}^n \frac{a_k^2}{k^3}$$\r
\n" ); document.write( "\n" ); document.write( "By the Cauchy-Schwarz inequality, we have
\n" ); document.write( "$$\left( \sum_{k=1}^n a_k \right)^2 \le \left( \sum_{k=1}^n \frac{a_k^2}{k^3} \right) \left( \sum_{k=1}^n k^3 \right)$$
\n" ); document.write( "Since $\sum_{k=1}^n a_k = 1$, we have
\n" ); document.write( "$$1 \le \left( \sum_{k=1}^n \frac{a_k^2}{k^3} \right) \left( \sum_{k=1}^n k^3 \right)$$
\n" ); document.write( "$$\sum_{k=1}^n \frac{a_k^2}{k^3} \ge \frac{1}{\sum_{k=1}^n k^3}$$
\n" ); document.write( "Therefore,
\n" ); document.write( "$$S \ge \frac{1}{\sum_{k=1}^n k^3}$$\r
\n" ); document.write( "\n" ); document.write( "The minimum value of $\sum_{k=1}^n \frac{x_k^2}{k}$ is $\frac{1}{\sum_{k=1}^n k^3}$.
\n" ); document.write( "We know that $\sum_{k=1}^n k^3 = \left( \frac{n(n+1)}{2} \right)^2$.
\n" ); document.write( "So the minimum value is
\n" ); document.write( "$$\frac{1}{\left( \frac{n(n+1)}{2} \right)^2} = \frac{4}{n^2(n+1)^2}$$\r
\n" ); document.write( "\n" ); document.write( "To achieve equality, we need
\n" ); document.write( "$$\frac{a_1}{1^3} = \frac{a_2}{2^3} = \dots = \frac{a_n}{n^3} = c$$
\n" ); document.write( "where $c$ is a constant.
\n" ); document.write( "Then $a_k = ck^3$, so $kx_k = ck^3$, which means $x_k = ck^2$.
\n" ); document.write( "Substituting into the given condition, we have
\n" ); document.write( "$$\sum_{k=1}^n kx_k = \sum_{k=1}^n k(ck^2) = c \sum_{k=1}^n k^3 = 1$$
\n" ); document.write( "$$c = \frac{1}{\sum_{k=1}^n k^3}$$
\n" ); document.write( "Then $x_k = \frac{k^2}{\sum_{k=1}^n k^3}$.\r
\n" ); document.write( "\n" ); document.write( "Therefore, the minimum value of $\sum_{k=1}^n \frac{x_k^2}{k}$ is $\frac{1}{\sum_{k=1}^n k^3} = \frac{4}{n^2(n+1)^2}$.\r
\n" ); document.write( "\n" ); document.write( "Final Answer: The final answer is $\boxed{\frac{4}{n^2(n+1)^2}}$
\n" ); document.write( "
\n" ); document.write( "
\n" );