document.write( "Question 1209897: Let x and y be real numbers satisfying
\n" );
document.write( "\frac{x^2y^2 - 1}{2y - 1} = 4x + y.
\n" );
document.write( "Find the largest possible value of x. \n" );
document.write( "
Algebra.Com's Answer #851023 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "(x^2y^2-1)/(2y-1) = 4x+y \n" ); document.write( "x^2y^2-1 = (4x+y)(2y-1) \n" ); document.write( "x^2y^2-1 = 8xy-4x+2y^2-y \n" ); document.write( "x^2y^2-1-8xy+4x-2y^2+y = 0 \n" ); document.write( "(x^2-2)y^2+(-8x+1)y+4x-1 = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Compare that to ay^2+by+c = 0 \n" ); document.write( "a = x^2-2 \n" ); document.write( "b = -8x+1 \n" ); document.write( "c = 4x-1 \n" ); document.write( "The discriminant must be 0 or larger so that we end up with real number solutions for variable y. \n" ); document.write( "b^2-4ac >= 0 \n" ); document.write( "(-8x+1)^2-4(x^2-2)(4x-1) >= 0 \n" ); document.write( "-16x^3+68x^2+16x-7 >= 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Use a graphing calculator such as Desmos or GeoGebra to plot out the cubic curve f(x) = -16x^3+68x^2+16x-7 \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The three approximate roots are \n" ); document.write( "p = -0.43067 \n" ); document.write( "q = 0.22815 \n" ); document.write( "r = 4.45252\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Between roots q and r, we have -16x^3+68x^2+16x-7 above the x axis. \n" ); document.write( "At root r is when x is maxed out, such that the discriminant is zero and y is a real number. \n" ); document.write( "If x gets any larger, then the discriminant becomes negative and leads y to being a non-real complex number.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Answer: x = 4.45252 (approximate) \n" ); document.write( " \n" ); document.write( " |