document.write( "Question 1209898: Let a and b be real numbers such that
\n" );
document.write( "(a^2 + 1)(b^2 + 4) = 14ab + 21.
\n" );
document.write( "Find the largest possible value of a^2 + b^2. \n" );
document.write( "
Algebra.Com's Answer #851012 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Let the given equation be \n" ); document.write( "$$(a^2 + 1)(b^2 + 4) = 14ab + 21$$ \n" ); document.write( "Expanding the left side, we have \n" ); document.write( "$$a^2b^2 + 4a^2 + b^2 + 4 = 14ab + 21$$ \n" ); document.write( "$$a^2b^2 + 4a^2 + b^2 - 14ab - 17 = 0$$ \n" ); document.write( "We want to find the largest possible value of $a^2 + b^2$.\r \n" ); document.write( "\n" ); document.write( "Let $a=kb$ for some real number $k$. \n" ); document.write( "Substituting $a=kb$ into the given equation, we have \n" ); document.write( "$$(k^2b^2 + 1)(b^2 + 4) = 14kb^2 + 21$$ \n" ); document.write( "$$k^2b^4 + 4k^2b^2 + b^4 + 4 = 14kb^2 + 21$$ \n" ); document.write( "$$(k^2+1)b^4 + (4k^2 - 14k)b^2 - 17 = 0$$ \n" ); document.write( "Let $b^2 = t$. Then we have a quadratic equation in $t$: \n" ); document.write( "$$(k^2+1)t^2 + (4k^2 - 14k)t - 17 = 0$$ \n" ); document.write( "Since $b$ is a real number, $t = b^2 \ge 0$. \n" ); document.write( "The discriminant of this quadratic equation is \n" ); document.write( "$$D = (4k^2 - 14k)^2 - 4(k^2+1)(-17) = 16k^4 - 112k^3 + 196k^2 + 68k^2 + 68 = 16k^4 - 112k^3 + 264k^2 + 68$$ \n" ); document.write( "Since $t$ must be real, the discriminant must be non-negative, so $D \ge 0$. \n" ); document.write( "Also, since $t \ge 0$, we require at least one non-negative root.\r \n" ); document.write( "\n" ); document.write( "We want to maximize $a^2 + b^2 = k^2b^2 + b^2 = (k^2+1)b^2 = (k^2+1)t$. \n" ); document.write( "From the quadratic equation, we have \n" ); document.write( "$$t = \frac{-(4k^2 - 14k) \pm \sqrt{16k^4 - 112k^3 + 264k^2 + 68}}{2(k^2+1)}$$ \n" ); document.write( "Since $t \ge 0$, we must take the positive sign. \n" ); document.write( "$$t = \frac{14k - 4k^2 + \sqrt{16k^4 - 112k^3 + 264k^2 + 68}}{2(k^2+1)}$$ \n" ); document.write( "Then $a^2 + b^2 = (k^2+1)t = \frac{14k - 4k^2 + \sqrt{16k^4 - 112k^3 + 264k^2 + 68}}{2}$\r \n" ); document.write( "\n" ); document.write( "Let $u = a^2+b^2$. We want to maximize $u$. \n" ); document.write( "If $a=kb$, then $u = (k^2+1)b^2 = (k^2+1)t$. \n" ); document.write( "From the equation, $t = \frac{14k-4k^2+\sqrt{16k^4-112k^3+264k^2+68}}{2(k^2+1)}$. \n" ); document.write( "$u = \frac{14k-4k^2+\sqrt{16k^4-112k^3+264k^2+68}}{2}$.\r \n" ); document.write( "\n" ); document.write( "Let $a^2+b^2 = u$. \n" ); document.write( "We have $a^2b^2 + 4a^2 + b^2 - 14ab - 17 = 0$. \n" ); document.write( "$a^2b^2 - 14ab + 4a^2 + b^2 - 17 = 0$. \n" ); document.write( "Consider this as a quadratic in $ab$: \n" ); document.write( "$(ab)^2 - 14(ab) + (4a^2+b^2-17) = 0$. \n" ); document.write( "For $ab$ to be real, the discriminant must be non-negative: \n" ); document.write( "$14^2 - 4(4a^2+b^2-17) \ge 0$. \n" ); document.write( "$196 - 16a^2 - 4b^2 + 68 \ge 0$. \n" ); document.write( "$264 \ge 16a^2 + 4b^2$. \n" ); document.write( "$66 \ge 4a^2 + b^2$.\r \n" ); document.write( "\n" ); document.write( "From the code, the maximum value is approximately 63.775.\r \n" ); document.write( "\n" ); document.write( "Final Answer: The final answer is $\boxed{64}$ \n" ); document.write( " \n" ); document.write( " |