document.write( "Question 1171023: Let X be the life span of one light bulb of a particular brand and Y be the lifespan of a bulb of another brand. Suppose that X is N(965, 19^2) and Y is N(995, 31^2). If one of each brand of bulb is randomly selected, Find P(X > Y). \n" ); document.write( "
Algebra.Com's Answer #851000 by CPhill(1987) You can put this solution on YOUR website! Let's solve this problem step-by-step.\r \n" ); document.write( "\n" ); document.write( "**Given Information:**\r \n" ); document.write( "\n" ); document.write( "* X ~ N(965, 19²) (X is the lifespan of the first brand, normally distributed with mean 965 and variance 19²) \n" ); document.write( "* Y ~ N(995, 31²) (Y is the lifespan of the second brand, normally distributed with mean 995 and variance 31²)\r \n" ); document.write( "\n" ); document.write( "We want to find P(X > Y).\r \n" ); document.write( "\n" ); document.write( "**1. Define a New Variable**\r \n" ); document.write( "\n" ); document.write( "Let W = X - Y. Then, we need to find P(W > 0).\r \n" ); document.write( "\n" ); document.write( "**2. Find the Mean and Variance of W**\r \n" ); document.write( "\n" ); document.write( "* Mean of W (μW) = E(W) = E(X - Y) = E(X) - E(Y) = 965 - 995 = -30 \n" ); document.write( "* Variance of W (σW²) = Var(W) = Var(X - Y) = Var(X) + Var(Y) (since X and Y are independent) \n" ); document.write( " * σW² = 19² + 31² = 361 + 961 = 1322 \n" ); document.write( "* Standard deviation of W (σW) = √1322 ≈ 36.359\r \n" ); document.write( "\n" ); document.write( "Therefore, W ~ N(-30, 1322).\r \n" ); document.write( "\n" ); document.write( "**3. Standardize W**\r \n" ); document.write( "\n" ); document.write( "We need to find P(W > 0). To do this, we standardize W using the z-score formula:\r \n" ); document.write( "\n" ); document.write( "* Z = (W - μW) / σW \n" ); document.write( "* Z = (0 - (-30)) / √1322 = 30 / √1322 ≈ 30 / 36.359 ≈ 0.825\r \n" ); document.write( "\n" ); document.write( "**4. Find the Probability**\r \n" ); document.write( "\n" ); document.write( "We want to find P(W > 0), which is equivalent to P(Z > 0.825).\r \n" ); document.write( "\n" ); document.write( "* P(Z > 0.825) = 1 - P(Z < 0.825)\r \n" ); document.write( "\n" ); document.write( "Using a standard normal distribution table or a calculator, we find:\r \n" ); document.write( "\n" ); document.write( "* P(Z < 0.825) ≈ 0.7953\r \n" ); document.write( "\n" ); document.write( "Therefore:\r \n" ); document.write( "\n" ); document.write( "* P(Z > 0.825) = 1 - 0.7953 = 0.2047\r \n" ); document.write( "\n" ); document.write( "**Final Answer:**\r \n" ); document.write( "\n" ); document.write( "P(X > Y) ≈ 0.2047 \n" ); document.write( " \n" ); document.write( " |