document.write( "Question 1209888: Compute
\n" ); document.write( "\frac{\{\sqrt{3}\} - 4 \{\sqrt{5}\}}{\{\sqrt{3}\}^2 + \{\sqrt{2}\}^2}.
\n" ); document.write( "

Algebra.Com's Answer #850988 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Let's compute the given expression step-by-step.\r
\n" ); document.write( "\n" ); document.write( "**Understanding Fractional Parts**\r
\n" ); document.write( "\n" ); document.write( "The fractional part of a number $x$, denoted by $\{x\}$, is defined as $\{x\} = x - \lfloor x \rfloor$, where $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$.\r
\n" ); document.write( "\n" ); document.write( "**Calculating Fractional Parts**\r
\n" ); document.write( "\n" ); document.write( "1. **$\{\sqrt{3}\}$:**
\n" ); document.write( " * $\sqrt{3} \approx 1.732$
\n" ); document.write( " * $\lfloor \sqrt{3} \rfloor = 1$
\n" ); document.write( " * $\{\sqrt{3}\} = \sqrt{3} - 1$\r
\n" ); document.write( "\n" ); document.write( "2. **$\{\sqrt{5}\}$:**
\n" ); document.write( " * $\sqrt{5} \approx 2.236$
\n" ); document.write( " * $\lfloor \sqrt{5} \rfloor = 2$
\n" ); document.write( " * $\{\sqrt{5}\} = \sqrt{5} - 2$\r
\n" ); document.write( "\n" ); document.write( "3. **$\{\sqrt{2}\}$:**
\n" ); document.write( " * $\sqrt{2} \approx 1.414$
\n" ); document.write( " * $\lfloor \sqrt{2} \rfloor = 1$
\n" ); document.write( " * $\{\sqrt{2}\} = \sqrt{2} - 1$\r
\n" ); document.write( "\n" ); document.write( "**Substituting into the Expression**\r
\n" ); document.write( "\n" ); document.write( "Now, substitute these fractional parts into the given expression:\r
\n" ); document.write( "\n" ); document.write( "$$\frac{\{\sqrt{3}\} - 4 \{\sqrt{5}\}}{\{\sqrt{3}\}^2 + \{\sqrt{2}\}^2} = \frac{(\sqrt{3} - 1) - 4(\sqrt{5} - 2)}{(\sqrt{3} - 1)^2 + (\sqrt{2} - 1)^2}$$\r
\n" ); document.write( "\n" ); document.write( "**Simplifying the Numerator**\r
\n" ); document.write( "\n" ); document.write( "* $(\sqrt{3} - 1) - 4(\sqrt{5} - 2) = \sqrt{3} - 1 - 4\sqrt{5} + 8 = \sqrt{3} - 4\sqrt{5} + 7$\r
\n" ); document.write( "\n" ); document.write( "**Simplifying the Denominator**\r
\n" ); document.write( "\n" ); document.write( "* $(\sqrt{3} - 1)^2 = (\sqrt{3})^2 - 2\sqrt{3} + 1 = 3 - 2\sqrt{3} + 1 = 4 - 2\sqrt{3}$
\n" ); document.write( "* $(\sqrt{2} - 1)^2 = (\sqrt{2})^2 - 2\sqrt{2} + 1 = 2 - 2\sqrt{2} + 1 = 3 - 2\sqrt{2}$
\n" ); document.write( "* $(\sqrt{3} - 1)^2 + (\sqrt{2} - 1)^2 = (4 - 2\sqrt{3}) + (3 - 2\sqrt{2}) = 7 - 2\sqrt{3} - 2\sqrt{2}$\r
\n" ); document.write( "\n" ); document.write( "**Putting it Together**\r
\n" ); document.write( "\n" ); document.write( "The expression becomes:\r
\n" ); document.write( "\n" ); document.write( "$$\frac{\sqrt{3} - 4\sqrt{5} + 7}{7 - 2\sqrt{3} - 2\sqrt{2}}$$\r
\n" ); document.write( "\n" ); document.write( "**Approximating the Result**\r
\n" ); document.write( "\n" ); document.write( "Let's approximate the values:\r
\n" ); document.write( "\n" ); document.write( "* $\sqrt{3} \approx 1.732$
\n" ); document.write( "* $\sqrt{5} \approx 2.236$
\n" ); document.write( "* $\sqrt{2} \approx 1.414$\r
\n" ); document.write( "\n" ); document.write( "Numerator:
\n" ); document.write( "* $1.732 - 4(2.236) + 7 = 1.732 - 8.944 + 7 = -0.212$\r
\n" ); document.write( "\n" ); document.write( "Denominator:
\n" ); document.write( "* $7 - 2(1.732) - 2(1.414) = 7 - 3.464 - 2.828 = 0.708$\r
\n" ); document.write( "\n" ); document.write( "Then the fraction is:\r
\n" ); document.write( "\n" ); document.write( "$$\frac{-0.212}{0.708} \approx -0.299435$$\r
\n" ); document.write( "\n" ); document.write( "**Exact Result**\r
\n" ); document.write( "\n" ); document.write( "$$\frac{\sqrt{3} - 4\sqrt{5} + 7}{7 - 2\sqrt{3} - 2\sqrt{2}}$$\r
\n" ); document.write( "\n" ); document.write( "Final Answer: The final answer is $\boxed{\frac{7 + \sqrt{3} - 4 \sqrt{5}}{7 - 2 \sqrt{2} - 2 \sqrt{3}}}$
\n" ); document.write( "
\n" ); document.write( "
\n" );