document.write( "Question 1209876: Find the largest value of x where the plots of
\n" );
document.write( "f(x) = - \frac{2x + 5}{x + 3} and g(x) = \frac{12}{x - 1}
\n" );
document.write( "intersect.
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #850964 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! To find the intersection points of $f(x)$ and $g(x)$, we set $f(x) = g(x)$:\r \n" ); document.write( "\n" ); document.write( "$$ - \frac{2x + 5}{x + 3} = \frac{12}{x - 1} $$\r \n" ); document.write( "\n" ); document.write( "Multiply both sides by $(x + 3)(x - 1)$ to eliminate the denominators:\r \n" ); document.write( "\n" ); document.write( "$$ -(2x + 5)(x - 1) = 12(x + 3) $$ \n" ); document.write( "$$ -(2x^2 - 2x + 5x - 5) = 12x + 36 $$ \n" ); document.write( "$$ -(2x^2 + 3x - 5) = 12x + 36 $$ \n" ); document.write( "$$ -2x^2 - 3x + 5 = 12x + 36 $$ \n" ); document.write( "$$ 0 = 2x^2 + 15x + 31 $$\r \n" ); document.write( "\n" ); document.write( "Now, we use the quadratic formula to solve for $x$:\r \n" ); document.write( "\n" ); document.write( "$$ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $$\r \n" ); document.write( "\n" ); document.write( "In this case, $a = 2$, $b = 15$, and $c = 31$.\r \n" ); document.write( "\n" ); document.write( "$$ x = \frac{-15 \pm \sqrt{15^2 - 4(2)(31)}}{2(2)} $$ \n" ); document.write( "$$ x = \frac{-15 \pm \sqrt{255 - 248}}{4} $$ \n" ); document.write( "$$ x = \frac{-15 \pm \sqrt{7}}{4} $$\r \n" ); document.write( "\n" ); document.write( "We have two solutions:\r \n" ); document.write( "\n" ); document.write( "$$ x_1 = \frac{-15 + \sqrt{7}}{4} $$ \n" ); document.write( "$$ x_2 = \frac{-15 - \sqrt{7}}{4} $$\r \n" ); document.write( "\n" ); document.write( "We want to find the largest value of $x$, so we choose the solution with the plus sign:\r \n" ); document.write( "\n" ); document.write( "$$ x_1 = \frac{-15 + \sqrt{7}}{4} $$\r \n" ); document.write( "\n" ); document.write( "We approximate the value of $\sqrt{7} \approx 2.646$.\r \n" ); document.write( "\n" ); document.write( "$$ x_1 \approx \frac{-15 + 2.646}{4} \approx \frac{-12.354}{4} \approx -3.0885 $$ \n" ); document.write( "$$ x_2 \approx \frac{-15 - 2.646}{4} \approx \frac{-17.646}{4} \approx -4.4115 $$\r \n" ); document.write( "\n" ); document.write( "Therefore, the largest value of $x$ is:\r \n" ); document.write( "\n" ); document.write( "$$ x = \frac{-15 + \sqrt{7}}{4} $$\r \n" ); document.write( "\n" ); document.write( "Final Answer: The final answer is $\boxed{\frac{-15 + \sqrt{7}}{4}}$ \n" ); document.write( " \n" ); document.write( " |