document.write( "Question 1209885: Let f be the piecewise function such that
\n" ); document.write( "f(x) =
\n" ); document.write( "x^2 - 5x - 64 & \text{if} \ x \le 0, \\
\n" ); document.write( "x^2 + 3x - 38 & \text{if} \ x > 0.\r
\n" ); document.write( "\n" ); document.write( "Find all x such that f(x) = 50.
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #850959 by CPhill(1987)\"\" \"About 
You can put this solution on YOUR website!
We are given the piecewise function:\r
\n" ); document.write( "\n" ); document.write( "$$ f(x) = \begin{cases} x^2 - 5x - 64 & \text{if } x \le 0 \\ x^2 + 3x - 38 & \text{if } x > 0 \end{cases} $$\r
\n" ); document.write( "\n" ); document.write( "We want to find all $x$ such that $f(x) = 50$.\r
\n" ); document.write( "\n" ); document.write( "**Case 1: $x \le 0$**\r
\n" ); document.write( "\n" ); document.write( "We have $x^2 - 5x - 64 = 50$, which simplifies to $x^2 - 5x - 114 = 0$.
\n" ); document.write( "We can use the quadratic formula to solve for $x$:
\n" ); document.write( "$$ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $$
\n" ); document.write( "In this case, $a = 1$, $b = -5$, and $c = -114$.
\n" ); document.write( "$$ x = \frac{5 \pm \sqrt{(-5)^2 - 4(1)(-114)}}{2(1)} = \frac{5 \pm \sqrt{25 + 456}}{2} = \frac{5 \pm \sqrt{481}}{2} $$
\n" ); document.write( "We have two possible solutions:
\n" ); document.write( "$$ x_1 = \frac{5 + \sqrt{481}}{2} \approx \frac{5 + 21.93}{2} \approx 13.465 $$
\n" ); document.write( "$$ x_2 = \frac{5 - \sqrt{481}}{2} \approx \frac{5 - 21.93}{2} \approx -8.465 $$
\n" ); document.write( "Since we are considering $x \le 0$, only $x_2$ is a valid solution.
\n" ); document.write( "Thus, $x = \frac{5 - \sqrt{481}}{2}$ is a solution.\r
\n" ); document.write( "\n" ); document.write( "**Case 2: $x > 0$**\r
\n" ); document.write( "\n" ); document.write( "We have $x^2 + 3x - 38 = 50$, which simplifies to $x^2 + 3x - 88 = 0$.
\n" ); document.write( "We can factor the quadratic as $(x - 8)(x + 11) = 0$.
\n" ); document.write( "The solutions are $x = 8$ and $x = -11$.
\n" ); document.write( "Since we are considering $x > 0$, only $x = 8$ is a valid solution.
\n" ); document.write( "Thus, $x = 8$ is a solution.\r
\n" ); document.write( "\n" ); document.write( "Therefore, the solutions are $x = \frac{5 - \sqrt{481}}{2}$ and $x = 8$.\r
\n" ); document.write( "\n" ); document.write( "Final Answer: The final answer is $\boxed{8, \frac{5 - \sqrt{481}}{2}}$
\n" ); document.write( "
\n" ); document.write( "
\n" );