document.write( "Question 1209869: Find the value of x that maximizes
\n" );
document.write( "f(x) = \log (-20x + 16 \sqrt{x} - x). \n" );
document.write( "
Algebra.Com's Answer #850924 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Let's break down this problem step-by-step.\r \n" ); document.write( "\n" ); document.write( "**1. Understand the Domain**\r \n" ); document.write( "\n" ); document.write( "First, we need to find the domain of the function inside the logarithm. We need:\r \n" ); document.write( "\n" ); document.write( "* `-20x + 16√x - x > 0` \n" ); document.write( "* `-21x + 16√x > 0` \n" ); document.write( "* `16√x > 21x`\r \n" ); document.write( "\n" ); document.write( "Since `√x` and `x` are involved, we know that `x ≥ 0`.\r \n" ); document.write( "\n" ); document.write( "Let `y = √x`, so `x = y²`. Then the inequality becomes:\r \n" ); document.write( "\n" ); document.write( "* `16y > 21y²` \n" ); document.write( "* `16y - 21y² > 0` \n" ); document.write( "* `y(16 - 21y) > 0`\r \n" ); document.write( "\n" ); document.write( "This inequality holds when `0 < y < 16/21`. Since `y = √x`, we have:\r \n" ); document.write( "\n" ); document.write( "* `0 < √x < 16/21` \n" ); document.write( "* `0 < x < (16/21)²` \n" ); document.write( "* `0 < x < 256/441`\r \n" ); document.write( "\n" ); document.write( "So the domain is `0 < x < 256/441`.\r \n" ); document.write( "\n" ); document.write( "**2. Maximize the Inside of the Logarithm**\r \n" ); document.write( "\n" ); document.write( "Since the logarithm is an increasing function, maximizing `f(x)` is equivalent to maximizing the expression inside the logarithm:\r \n" ); document.write( "\n" ); document.write( "* `g(x) = -21x + 16√x`\r \n" ); document.write( "\n" ); document.write( "Let `y = √x` again. Then `g(x) = -21y² + 16y`.\r \n" ); document.write( "\n" ); document.write( "This is a quadratic function in `y`. To find its maximum, we can complete the square or find the vertex.\r \n" ); document.write( "\n" ); document.write( "The vertex of a quadratic `ay² + by + c` is at `y = -b / (2a)`. In our case:\r \n" ); document.write( "\n" ); document.write( "* `y = -16 / (2 * -21) = 16 / 42 = 8 / 21`\r \n" ); document.write( "\n" ); document.write( "Now, substitute back `y = √x`:\r \n" ); document.write( "\n" ); document.write( "* `√x = 8 / 21` \n" ); document.write( "* `x = (8 / 21)² = 64 / 441`\r \n" ); document.write( "\n" ); document.write( "Since `64/441` is within the domain `(0, 256/441)`, this is a valid maximum.\r \n" ); document.write( "\n" ); document.write( "**3. Verify the Maximum**\r \n" ); document.write( "\n" ); document.write( "To ensure this is a maximum, we can take the second derivative of `g(x)` with respect to `x`:\r \n" ); document.write( "\n" ); document.write( "* `g(x) = -21x + 16x^(1/2)` \n" ); document.write( "* `g'(x) = -21 + 8x^(-1/2)` \n" ); document.write( "* `g''(x) = -4x^(-3/2)`\r \n" ); document.write( "\n" ); document.write( "Since `g''(x)` is negative for all `x > 0`, the function `g(x)` is concave down, and the value we found is indeed a maximum.\r \n" ); document.write( "\n" ); document.write( "**Conclusion**\r \n" ); document.write( "\n" ); document.write( "The value of `x` that maximizes `f(x) = log(-20x + 16√x - x)` is:\r \n" ); document.write( "\n" ); document.write( "* `x = 64 / 441` \n" ); document.write( " \n" ); document.write( " |