document.write( "Question 1171510: Show the mathematics of designing and constrcting a parabolic arch that is 10 meters across the base and 10 meters tall (measured from the ground to the vertex at the bottom of the keystone). Remember: -4a(y-k)=(x-h)^2
\n" );
document.write( "a) Place an axis system on this parabola
\n" );
document.write( "b) Find the function for this parabola
\n" );
document.write( "c) Make a chart of values for functional heights spaced 1 meter apart
\n" );
document.write( "d)How far down from the vertex is the focal point? \n" );
document.write( "
Algebra.Com's Answer #850900 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Let's break down the design and construction of the parabolic arch step-by-step.\r \n" ); document.write( "\n" ); document.write( "**a) Placing an Axis System**\r \n" ); document.write( "\n" ); document.write( "* We'll place the vertex of the parabola at the origin (0, 0). \n" ); document.write( "* The x-axis will run along the base of the arch. \n" ); document.write( "* The y-axis will run vertically through the center of the arch. \n" ); document.write( "* The base of the arch is 10 meters across, so the endpoints of the base are at (-5, -10) and (5, -10). \n" ); document.write( "* The arch is 10 meters tall, so the vertex is at (0, 0).\r \n" ); document.write( "\n" ); document.write( "**b) Finding the Function for the Parabola**\r \n" ); document.write( "\n" ); document.write( "* We'll use the standard form of a vertical parabola: -4a(y - k) = (x - h)² \n" ); document.write( "* Vertex (h, k) = (0, 0) \n" ); document.write( "* The equation becomes: -4ay = x² \n" ); document.write( "* We know a point on the parabola is (5, -10). Let's plug this in: \n" ); document.write( " * -4a(-10) = 5² \n" ); document.write( " * 40a = 25 \n" ); document.write( " * a = 25/40 = 5/8 \n" ); document.write( "* Substitute 'a' back into the equation: \n" ); document.write( " * -4(5/8)y = x² \n" ); document.write( " * -5/2 y = x² \n" ); document.write( " * y = (-2/5)x²\r \n" ); document.write( "\n" ); document.write( "**c) Chart of Values for Functional Heights (1 Meter Spacing)**\r \n" ); document.write( "\n" ); document.write( "| x (meters) | y (meters) | \n" ); document.write( "| :--------- | :--------- | \n" ); document.write( "| -5 | -10 | \n" ); document.write( "| -4 | -6.4 | \n" ); document.write( "| -3 | -3.6 | \n" ); document.write( "| -2 | -1.6 | \n" ); document.write( "| -1 | -0.4 | \n" ); document.write( "| 0 | 0 | \n" ); document.write( "| 1 | -0.4 | \n" ); document.write( "| 2 | -1.6 | \n" ); document.write( "| 3 | -3.6 | \n" ); document.write( "| 4 | -6.4 | \n" ); document.write( "| 5 | -10 |\r \n" ); document.write( "\n" ); document.write( "**d) Focal Point**\r \n" ); document.write( "\n" ); document.write( "* The distance from the vertex to the focal point is 'a'. \n" ); document.write( "* We found a = 5/8 meters. \n" ); document.write( "* Therefore, the focal point is 5/8 meters (0.625 meters) below the vertex.\r \n" ); document.write( "\n" ); document.write( "**Summary**\r \n" ); document.write( "\n" ); document.write( "* **Axis System:** Vertex at (0, 0), base endpoints at (-5, -10) and (5, -10). \n" ); document.write( "* **Parabola Function:** y = (-2/5)x² \n" ); document.write( "* **Chart of Values:** (See table above) \n" ); document.write( "* **Focal Point:** 5/8 meters (0.625 meters) below the vertex. \n" ); document.write( " \n" ); document.write( " |