document.write( "Question 1209854: For each of the following functions, determine if the function is increasing, decreasing, even, odd, and/or invertible on its natural domain. Select all the properties that apply.
\n" ); document.write( "f(x) = x^3 - 3x^2 + 10x - 15
\n" ); document.write( "

Algebra.Com's Answer #850890 by CPhill(1987)\"\" \"About 
You can put this solution on YOUR website!
Let's analyze the function f(x) = x³ - 3x² + 10x - 15.\r
\n" ); document.write( "\n" ); document.write( "**1. Natural Domain:**\r
\n" ); document.write( "\n" ); document.write( "* Since f(x) is a polynomial, its natural domain is all real numbers, (-∞, ∞).\r
\n" ); document.write( "\n" ); document.write( "**2. Even or Odd:**\r
\n" ); document.write( "\n" ); document.write( "* **Even:** f(-x) = f(x)
\n" ); document.write( "* **Odd:** f(-x) = -f(x)\r
\n" ); document.write( "\n" ); document.write( "Let's test f(-x):\r
\n" ); document.write( "\n" ); document.write( "f(-x) = (-x)³ - 3(-x)² + 10(-x) - 15
\n" ); document.write( "f(-x) = -x³ - 3x² - 10x - 15\r
\n" ); document.write( "\n" ); document.write( "Now, let's see if f(-x) = f(x) or f(-x) = -f(x):\r
\n" ); document.write( "\n" ); document.write( "* f(x) = x³ - 3x² + 10x - 15
\n" ); document.write( "* -f(x) = -x³ + 3x² - 10x + 15\r
\n" ); document.write( "\n" ); document.write( "Comparing:\r
\n" ); document.write( "\n" ); document.write( "* f(-x) ≠ f(x) (Not even)
\n" ); document.write( "* f(-x) ≠ -f(x) (Not odd)\r
\n" ); document.write( "\n" ); document.write( "Therefore, the function is **neither even nor odd**.\r
\n" ); document.write( "\n" ); document.write( "**3. Increasing or Decreasing:**\r
\n" ); document.write( "\n" ); document.write( "* To determine if the function is increasing or decreasing, we need to analyze its derivative, f'(x).\r
\n" ); document.write( "\n" ); document.write( "f'(x) = 3x² - 6x + 10\r
\n" ); document.write( "\n" ); document.write( "To find when f'(x) > 0 (increasing) and when f'(x) < 0 (decreasing), we need to analyze the discriminant of the quadratic f'(x):\r
\n" ); document.write( "\n" ); document.write( "Discriminant (Δ) = b² - 4ac
\n" ); document.write( "Δ = (-6)² - 4(3)(10)
\n" ); document.write( "Δ = 36 - 120
\n" ); document.write( "Δ = -84\r
\n" ); document.write( "\n" ); document.write( "Since the discriminant is negative, the quadratic f'(x) has no real roots. Also, since the coefficient of x² in f'(x) is positive (3), the parabola opens upwards. This means f'(x) is always positive for all real numbers x.\r
\n" ); document.write( "\n" ); document.write( "Therefore, f'(x) > 0 for all x, and the function f(x) is **always increasing** on its domain.\r
\n" ); document.write( "\n" ); document.write( "**4. Invertibility:**\r
\n" ); document.write( "\n" ); document.write( "* If a function is strictly increasing or strictly decreasing, it is invertible.
\n" ); document.write( "* Since the function is strictly increasing over its domain, it is **invertible**.\r
\n" ); document.write( "\n" ); document.write( "**Conclusion:**\r
\n" ); document.write( "\n" ); document.write( "* **Domain:** (-∞, ∞)
\n" ); document.write( "* **Neither even nor odd**
\n" ); document.write( "* **Invertible:** Yes
\n" ); document.write( "* **Increasing:** Yes
\n" ); document.write( "* **Decreasing:** No
\n" ); document.write( "
\n" ); document.write( "
\n" );