document.write( "Question 1209860: For each of the following functions, determine if the function is increasing, decreasing, even, odd, and/or invertible on its natural domain. Select all the properties that apply.
\n" ); document.write( "f(x) = \frac{\sqrt{|x|}}{x} + x + \frac{1}{x^2}
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #850884 by CPhill(1987)\"\" \"About 
You can put this solution on YOUR website!
Let's analyze the function f(x) = (√|x| / x) + x + (1/x²) to determine its properties.\r
\n" ); document.write( "\n" ); document.write( "**1. Natural Domain:**\r
\n" ); document.write( "\n" ); document.write( "* The square root requires |x| ≥ 0, which is true for all x.
\n" ); document.write( "* The terms 1/x and 1/x² require x ≠ 0.
\n" ); document.write( "* Therefore, the natural domain is all real numbers except 0, or (-∞, 0) U (0, ∞).\r
\n" ); document.write( "\n" ); document.write( "**2. Even or Odd:**\r
\n" ); document.write( "\n" ); document.write( "* **Even:** f(-x) = f(x)
\n" ); document.write( "* **Odd:** f(-x) = -f(x)\r
\n" ); document.write( "\n" ); document.write( "Let's test f(-x):\r
\n" ); document.write( "\n" ); document.write( "f(-x) = (√|-x| / -x) - x + (1/(-x)²)
\n" ); document.write( "f(-x) = (√|x| / -x) - x + (1/x²)
\n" ); document.write( "f(-x) = -(√|x| / x) - x + (1/x²)\r
\n" ); document.write( "\n" ); document.write( "Now, let's see if f(-x) = f(x) or f(-x) = -f(x):\r
\n" ); document.write( "\n" ); document.write( "* f(x) = (√|x| / x) + x + (1/x²)
\n" ); document.write( "* -f(x) = -(√|x| / x) - x - (1/x²)\r
\n" ); document.write( "\n" ); document.write( "Comparing:\r
\n" ); document.write( "\n" ); document.write( "* f(-x) ≠ f(x) (Not even)
\n" ); document.write( "* f(-x) ≠ -f(x) (Not odd)\r
\n" ); document.write( "\n" ); document.write( "Therefore, the function is **neither even nor odd**.\r
\n" ); document.write( "\n" ); document.write( "**3. Increasing or Decreasing:**\r
\n" ); document.write( "\n" ); document.write( "* To determine if the function is increasing or decreasing, we need to analyze its derivative, f'(x).\r
\n" ); document.write( "\n" ); document.write( "Let's break down f(x) into cases:\r
\n" ); document.write( "\n" ); document.write( "* **For x > 0:** f(x) = (√x / x) + x + (1/x²) = x^(-1/2) + x + x^(-2)
\n" ); document.write( "* **For x < 0:** f(x) = (√(-x) / x) + x + (1/x²) = -(-x)^(-1/2) + x + x^(-2)\r
\n" ); document.write( "\n" ); document.write( "Now, find the derivatives:\r
\n" ); document.write( "\n" ); document.write( "* **For x > 0:**
\n" ); document.write( " * f'(x) = (-1/2)x^(-3/2) + 1 - 2x^(-3) = (-1/2x√x) + 1 - (2/x³)
\n" ); document.write( "* **For x < 0:**
\n" ); document.write( " * f'(x) = (-1/2)(-x)^(-3/2) + 1 - 2x^(-3) = (1/2(-x)√-x) + 1 - (2/x³)\r
\n" ); document.write( "\n" ); document.write( "Analyzing the derivatives is complex and doesn't reveal a simple answer. It's difficult to make a general statement about increasing or decreasing behavior across the entire domain.
\n" ); document.write( "Therefore, we cannot easily state if the function is increasing or decreasing. A graphing calculator would be helpful to determine this.\r
\n" ); document.write( "\n" ); document.write( "**4. Invertibility:**\r
\n" ); document.write( "\n" ); document.write( "* A function is invertible if it is one-to-one (passes the horizontal line test).
\n" ); document.write( "* Since the function is not strictly increasing or decreasing across its entire domain, it is **not invertible**. Also, because it is not even or odd, it is likely not invertible.\r
\n" ); document.write( "\n" ); document.write( "**Conclusion:**\r
\n" ); document.write( "\n" ); document.write( "* **Domain:** (-∞, 0) U (0, ∞)
\n" ); document.write( "* **Neither even nor odd**
\n" ); document.write( "* **Invertible:** No
\n" ); document.write( "* **Increasing/Decreasing:** Difficult to determine without further analysis (graphing is recommended).
\n" ); document.write( "
\n" ); document.write( "
\n" );