document.write( "Question 1172355: A random variable X has pdf = 1 - x/2 in interval (0, 2). What is the expected value of random variable X² \n" ); document.write( "
Algebra.Com's Answer #850823 by CPhill(1987)![]() ![]() You can put this solution on YOUR website! Let's find the expected value of X².\r \n" ); document.write( "\n" ); document.write( "**Understanding Expected Value**\r \n" ); document.write( "\n" ); document.write( "The expected value of a function g(X) of a continuous random variable X with probability density function (PDF) f(x) is given by:\r \n" ); document.write( "\n" ); document.write( "E[g(X)] = ∫ g(x) * f(x) dx\r \n" ); document.write( "\n" ); document.write( "**Applying the Formula**\r \n" ); document.write( "\n" ); document.write( "In this case:\r \n" ); document.write( "\n" ); document.write( "* g(X) = X² \n" ); document.write( "* f(x) = 1 - x/2 for 0 ≤ x ≤ 2 \n" ); document.write( "* f(x) = 0 elsewhere\r \n" ); document.write( "\n" ); document.write( "So, we need to calculate:\r \n" ); document.write( "\n" ); document.write( "E[X²] = ∫(from 0 to 2) x² * (1 - x/2) dx\r \n" ); document.write( "\n" ); document.write( "**Calculating the Integral**\r \n" ); document.write( "\n" ); document.write( "1. **Expand the expression:** \n" ); document.write( " * E[X²] = ∫(from 0 to 2) (x² - x³/2) dx\r \n" ); document.write( "\n" ); document.write( "2. **Integrate:** \n" ); document.write( " * E[X²] = [x³/3 - x⁴/8](from 0 to 2)\r \n" ); document.write( "\n" ); document.write( "3. **Evaluate the integral at the limits:** \n" ); document.write( " * E[X²] = [(2)³/3 - (2)⁴/8] - [(0)³/3 - (0)⁴/8] \n" ); document.write( " * E[X²] = [8/3 - 16/8] - [0] \n" ); document.write( " * E[X²] = 8/3 - 2 \n" ); document.write( " * E[X²] = 8/3 - 6/3 \n" ); document.write( " * E[X²] = 2/3\r \n" ); document.write( "\n" ); document.write( "**Result**\r \n" ); document.write( "\n" ); document.write( "Therefore, the expected value of X² is 2/3, which is approximately 0.6667. \n" ); document.write( " \n" ); document.write( " |