document.write( "Question 1172515: Suppose that the joint density function of the random variables X and Y is given by
\n" );
document.write( " F(x,y) ={8xy if 0≤y≤x≤1
\n" );
document.write( " 0 elsewhere
\n" );
document.write( "a)ComputeP(X+Y <1).(Sketch the region clearly.)
\n" );
document.write( "b)Find the marginal density of X, i.e.fX(x) and marginal density of Y, i.e.fY(y).
\n" );
document.write( "c)Find the conditional density of Y given X=1/2, that is,fY|X(y|1/2).
\n" );
document.write( "d)Find the conditional expectation of Y given X=1/2, that is,E[Y|X=1/2]. \n" );
document.write( "
Algebra.Com's Answer #850813 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Let's break down this problem step by step.\r \n" ); document.write( "\n" ); document.write( "**Given:**\r \n" ); document.write( "\n" ); document.write( "* Joint density function: \n" ); document.write( " * F(x, y) = 8xy if 0 ≤ y ≤ x ≤ 1 \n" ); document.write( " * F(x, y) = 0 elsewhere\r \n" ); document.write( "\n" ); document.write( "**a) Compute P(X + Y < 1)**\r \n" ); document.write( "\n" ); document.write( "1. **Sketch the Region:** \n" ); document.write( " * The region defined by 0 ≤ y ≤ x ≤ 1 is a triangle in the first quadrant with vertices (0, 0), (1, 0), and (1, 1). \n" ); document.write( " * The condition X + Y < 1 implies Y < 1 - X. This is the region below the line Y = 1 - X. \n" ); document.write( " * We need to find the intersection of these two regions. \n" ); document.write( " * The intersection is a triangle with vertices (0, 0), (1, 0), and (1/2, 1/2).\r \n" ); document.write( "\n" ); document.write( "2. **Set up the Integral:** \n" ); document.write( " * P(X + Y < 1) = ∫∫ F(x, y) dy dx \n" ); document.write( " * The limits of integration are: \n" ); document.write( " * 0 ≤ x ≤ 1/2 \n" ); document.write( " * 0 ≤ y ≤ 1 - x\r \n" ); document.write( "\n" ); document.write( "3. **Evaluate the Integral:** \n" ); document.write( " * P(X + Y < 1) = ∫(from 0 to 1/2) ∫(from 0 to 1-x) 8xy dy dx \n" ); document.write( " * P(X + Y < 1) = ∫(from 0 to 1/2) [4xy^2](from 0 to 1-x) dx \n" ); document.write( " * P(X + Y < 1) = ∫(from 0 to 1/2) 4x(1 - x)^2 dx \n" ); document.write( " * P(X + Y < 1) = ∫(from 0 to 1/2) 4x(1 - 2x + x^2) dx \n" ); document.write( " * P(X + Y < 1) = ∫(from 0 to 1/2) (4x - 8x^2 + 4x^3) dx \n" ); document.write( " * P(X + Y < 1) = [2x^2 - (8/3)x^3 + x^4](from 0 to 1/2) \n" ); document.write( " * P(X + Y < 1) = 2(1/4) - (8/3)(1/8) + (1/16) \n" ); document.write( " * P(X + Y < 1) = 1/2 - 1/3 + 1/16 \n" ); document.write( " * P(X + Y < 1) = (24 - 16 + 3)/48 = 11/48\r \n" ); document.write( "\n" ); document.write( "**b) Find the Marginal Densities fX(x) and fY(y)**\r \n" ); document.write( "\n" ); document.write( "1. **Marginal Density of X (fX(x)):** \n" ); document.write( " * fX(x) = ∫(from 0 to x) 8xy dy \n" ); document.write( " * fX(x) = [4xy^2](from 0 to x) \n" ); document.write( " * fX(x) = 4x^3, 0 ≤ x ≤ 1\r \n" ); document.write( "\n" ); document.write( "2. **Marginal Density of Y (fY(y)):** \n" ); document.write( " * fY(y) = ∫(from y to 1) 8xy dx \n" ); document.write( " * fY(y) = [4x^2y](from y to 1) \n" ); document.write( " * fY(y) = 4y - 4y^3, 0 ≤ y ≤ 1\r \n" ); document.write( "\n" ); document.write( "**c) Find the Conditional Density fY|X(y|1/2)**\r \n" ); document.write( "\n" ); document.write( "1. **Conditional Density Formula:** \n" ); document.write( " * fY|X(y|x) = F(x, y) / fX(x)\r \n" ); document.write( "\n" ); document.write( "2. **Substitute x = 1/2:** \n" ); document.write( " * fY|X(y|1/2) = 8(1/2)y / 4(1/2)^3 \n" ); document.write( " * fY|X(y|1/2) = 4y/(1/2) \n" ); document.write( " * fY|X(y|1/2) = 8y. \n" ); document.write( " * Since 0 <= y <= x, and x = 1/2, then 0<=y<=1/2.\r \n" ); document.write( "\n" ); document.write( "3. **Result:** \n" ); document.write( " * fY|X(y|1/2) = 8y, 0 ≤ y ≤ 1/2\r \n" ); document.write( "\n" ); document.write( "**d) Find the Conditional Expectation E[Y|X=1/2]**\r \n" ); document.write( "\n" ); document.write( "1. **Conditional Expectation Formula:** \n" ); document.write( " * E[Y|X=1/2] = ∫ y * fY|X(y|1/2) dy\r \n" ); document.write( "\n" ); document.write( "2. **Substitute and Evaluate:** \n" ); document.write( " * E[Y|X=1/2] = ∫(from 0 to 1/2) y * 8y dy \n" ); document.write( " * E[Y|X=1/2] = ∫(from 0 to 1/2) 8y^2 dy \n" ); document.write( " * E[Y|X=1/2] = [(8/3)y^3](from 0 to 1/2) \n" ); document.write( " * E[Y|X=1/2] = (8/3) * (1/8) \n" ); document.write( " * E[Y|X=1/2] = 1/3\r \n" ); document.write( "\n" ); document.write( "**Summary**\r \n" ); document.write( "\n" ); document.write( "* a) P(X + Y < 1) = 11/48 \n" ); document.write( "* b) fX(x) = 4x^3, 0 ≤ x ≤ 1; fY(y) = 4y - 4y^3, 0 ≤ y ≤ 1 \n" ); document.write( "* c) fY|X(y|1/2) = 8y, 0 ≤ y ≤ 1/2 \n" ); document.write( "* d) E[Y|X=1/2] = 1/3 \n" ); document.write( " \n" ); document.write( " |